IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1,

JANUARY 2007 43

Extracting Actionable Knowledge from
Decision Trees

Qiang Yang, Senior Member, IEEE, Jie Yin, Charles Ling, and Rong Pan

Abstract—Most data mining algorithms and tools stop at discovered customer models, producing distribution information on customer
profiles. Such techniques, when applied to industrial problems such as customer relationship management (CRM), are useful in
pointing out customers who are likely attritors and customers who are loyal, but they require human experts to postprocess the
discovered knowledge manually. Most of the postprocessing techniques have been limited to producing visualization results and
interestingness ranking, but they do not directly suggest actions that would lead to an increase in the objective function such as profit.
In this paper, we present novel algorithms that suggest actions to change customers from an undesired status (such as attritors) to a
desired one (such as loyal) while maximizing an objective function: the expected net profit. These algorithms can discover cost-
effective actions to transform customers from undesirable classes to desirable ones. The approach we take integrates data mining and
decision making tightly by formulating the decision making problems directly on top of the data mining results in a postprocessing step.
To improve the effectiveness of the approach, we also present an ensemble of decision trees which is shown to be more robust when
the training data changes. Empirical tests are conducted on both a realistic insurance application domain and UCI benchmark data.

Index Terms—Phrases decision making, data mining, machine learning.

1 INTRODUCTION

XTENSIVE research in data mining has been done on

discovering distributional knowledge about the under-
lying data. Models such as Bayesian models, decision trees,
support vector machines, and association rules have been
applied to various industrial applications such as customer
relationship management (CRM) [3], [30], [32], [10]. Despite
such phenomenal success, most of these techniques stop
short of the final objective of data mining, which is to
maximize the profit while reducing the costs, relying on
such postprocessing techniques as visualization and inter-
estingness ranking [23], [29]. While these techniques are
essential to move the data mining result to the eventual
applications, they nevertheless require a great deal of
human manual work by experts. Often, in industrial
practice, one needs to walk an extra mile to automatically
extract the real “nuggets” of knowledge, the actions, in
order to maximize the final objective functions.

In this paper, we present a novel postprocessing
technique to extract actionable knowledge from decision
trees. To illustrate our motivation, we consider customer
relationship management CRM [6], [16], [20], in particular,
where we take the telecommunications industry as an
example. This industry is experiencing more and more
competitions in recent years. The battle is over their most
valuable customers. With massive industry deregulation

e Q. Yang, | Yin, and R. Pan are with the Department of Computer Science
and Engineering, Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong.

E-mail: {qyang, yinjie, panrong|@cse.ust.hk.

o C. Ling is with the Department of Computer Science, The University of
Western Ontario, London, Ontario N6A 5B7, Canada.

Email: cling@csd.wuo.ca.

Manuscript received 26 May 2005; revised 15 Mar. 2006; accepted 28 Aug.
2006; published online 20 Nov. 2006.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0212-0505.

1041-4347/07/$20.00 © 2007 IEEE

across the world, each customer is facing an ever-growing
number of choices in telecommunications and financial
services. As a result, an increasing number of customers are
switching from one service provider to another. This
phenomenon is called customer “churning” or “attrition,”
which is a major problem for these companies and makes it
hard for them to stay profitable. The data sets are often cost
sensitive and unbalanced. If we predict a valuable customer
who will be an attritor as loyal, the cost is usually higher
than the case when we classify a loyal customer as an
attritor. Similarly, in direct marketing, it costs more to
classify a willing customer as a reluctant one. Such
information is usually given by a cost matrix, where the
objective is to minimize the total cost. In addition, a CRM
data set is often unbalanced; the most valuable customers
who actually churn can be only a small fraction of the
customers who stay.

In the past, many researchers have tackled the direct
marketing problem as a classification problem [28], [27],
[14], [43], where the cost-sensitive and unbalanced nature of
the problem is taken into account. In management and
marketing sciences, stochastic models are used to describe
the response behavior of customers [9], [12], [25], [7]. In the
data mining area, a main approach is to rank the customers
by the estimated likelihood to respond to direct marketing
actions and compare the rankings using a lift chart or the
area under curve measure from the ROC curve [27], [31],
[22]. Domingos [14] proposed the MetaCost framework for
adapting accuracy-based classification to cost-sensitive
learning by incorporating a cost matrix and conditional
risk. Elkan and Zadrozny [17], [43] examined general cases
where a classification decision depends on both the
destination class and the customer in question. Various
ensemble-based methods are examined under the cost-
sensitive learning framework; for example, Fan et al. [21]

Published by the IEEE Computer Society

44 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1,

integrated boosting algorithms with cost considerations. An
association-rule-based approach is proposed in [40], where
a focus is placed on data preprocessing in which the cost-
sensitive and data-imbalance knowledge about the data is
used in a data sampling phase. The resultant prediction
model produces higher net profits when compared against
the winners of the ACM KDDCUP 1998 competition [1].
Wang et al. [41], [39] took the actions and a data set as input
and generated utility-enhancing patterns which are then
pruned to produce the cost-effective action sets.

Recognizing the sequential nature of some CRM pro-
blems, Pednault et al. applied the framework of reinforce-
ment learning to address the issue of sequential decision
making when interactions can occur among decision out-
comes [34]. Reinforcement learning refers to a class of
problems and associated techniques in which the learner is
to learn how to make sequential decisions based on delayed
reinforcement so as to maximize cumulative rewards. In a
Markov Decision Process (MDP), the environment is
assumed to be in some state at any given point in time. In
the case of targeted marketing, such states would be
represented as feature vectors comprised of both the
categorical and numerical data fields on which decision
on what next actions to take is made.

Like most data mining algorithms today, a common
problem in current applications of data mining in intelligent
CRM is that people tend to focus on, and be satisfied with,
building up the models and interpreting them, but not to
use them to get profit explicitly. More specifically, most
data mining algorithms (predictive or supervised learning
algorithms) only aim at constructing customer profiles,
which predict the characteristics of customers of certain
classes. Examples of these classes are: What kind of
customers (described by their attributes such as age,
income, etc.) are likely attritors (who will go to competi-
tors), and what kind are loyal customers? This knowledge is
useful but it does not directly benefit the enterprise. To
improve customer relationship, the enterprise must know
what actions to take to change customers from an undesired
status (such as attritors) to a desired one (such as loyal
customers). This can be done in the telecommunications
industry, for example, by reducing the monthly rates or
increasing the service level for a valuable customer.

Unlike distributional knowledge, to consider actionable
knowledge one must take into account resource constraints.
Actions, such as direct mailing and sales promotion, cost
money to the enterprise [42]. At the same time, enterprises
are increasingly constrained by cost cutting. There is thus a
strong limitation on the number of customer segments that
the company can take on, or in the number of actions the
company can exploit. To make a decision, one must take
into account the cost as well as the benefit of actions to the
enterprise. However, for each customer, there may be a
large number of possible actions or action sets that can be
applied to the customer. Which of the actions to take
depends not only on the particular customers’ situation, but
also on other customers who might benefit from the same
action.

In the past, several approaches have been designed to
extract knowledge from the CRM data. When the actions

JANUARY 2007

and state information are given in the data, sequential
mining methods can be applied using MDP-like approaches
[34]. When the actions are initially unknown, however, few
approaches have been designed to invent new actions that
can minimize the total cost and bring about profitable
changes. In this paper, we present novel algorithms for
postprocessing decision trees to obtain actions that are
associated with attribute-value changes, in order to max-
imize the profit-based objective functions. This allows a
large number of candidate actions to be considered,
complicating the computation.

More specifically, in this paper, we consider two broad
cases. One case corresponds to the unlimited resource
situation, which is only an approximation to the real-world
situations, although it allows a clear introduction to the
problem. Another more realistic case is the limited-resource
situation, where the actions must be restricted to be below a
certain cost level. In both cases, our aim is to maximize the
expected net profit of all the customers. We show that
finding the optimal solution for the limited resource
problem and designing a greedy heuristic algorithm to
solve it efficiently is computationally hard. We compare the
performance of the exhaustive search algorithm with a
greedy heuristic algorithm, and show that the greedy
algorithm is efficient while achieving results with quality
very close to the optimal one. In order to improve the
robustness of the mined actions, we also describe an
ensemble-based decision tree algorithm [26], using a collec-
tion of decision trees rather than a single tree, to generate the
actions. We show that the resultant action sets are indeed
more robust with respect to training data changes.

An important contribution of the paper is that it
integrates data mining and decision making together, such
that the discovery of actions is guided by the result of data
mining algorithms (decision trees in our case). While
decision-making and optimization techniques are not new,
their application to data mining has resulted in a new
generation of learning algorithms, such as support vector
machines [38], [11], manifold regularization for subspace
learning [5]. The work of [34] that applies MDP to customer
databases allows new knowledge—probabilistic plans—to
be extracted from the data sets, allowing a new type of
knowledge to be discovered from the data sets. However,
they require the actions and state changes to be given as
part of the input. Our approach can be considered as a new
step in this direction, which is to discover action sets from
the attribute value changes in a nonsequential data set
through optimization.

The rest of the paper is organized as follows: We first
present our base algorithm for finding unrestricted actions
in Section 2. We then formulate two versions of action-set
extraction problems, and show that finding the optimal
solution for the problems is computationally difficult in the
limited resources case (Section 3). We show that our greedy
algorithms are efficient while achieving results very close to
the optimal ones obtained by the exhaustive search (which
is exponential in time complexity). We also present an
ensemble tree-based technique for making the technique
robust. Conclusions and future work are presented in
Section 4.

YANG ET AL.: EXTRACTING ACTIONABLE KNOWLEDGE FROM DECISION TREES 45

2 AcCTION EXTRACTION IN DECISION TREES:
UNLIMITED-RESOURCE CASE

2.1 A First Step in Postprocessing Decision Trees

Decision-tree learning algorithms, such as ID3 or C4.5 [36],
are among the most powerful and popular predictive
methods for classification. In CRM applications, a decision
tree can be built from a set of examples (customers)
described by a rich set of attributes including customer
personal information (such as name, sex, and birthday, etc.),
financial information (such as yearly income), family
information (such as life style, number of children), and
so on. Because decision trees can be converted to rules for
explicit representation of the classification, one can easily
obtain characteristics of customers belonging to a certain
class (such as attritors). In this paper, we focus on the
output of decision tree algorithms as the input to our
postprocessing algorithms. Our algorithms rely on not only
a prediction, but also a probability estimation of the
classification, such as the probability of being loyal. Such
information is available from decision trees.

Our first step is to consider how to extract actions when
there is no restriction on the number of actions to produce.
Our first industrial case study of an application corresponds
to this case [10]. We call this the unlimited-resource case. Our
data set consists of descriptive attributes and a class
attribute. For simplicity, we consider a discrete-value
problem, in which the class values are discrete values.
Some of the values under the class attribute are more
desirable than others. For example, in the banking applica-
tion, the loyal status of a customer “stay” is more desirable
than “not stay.” The overall process of the algorithm can be
briefly described in the following four steps:

1. Import customer data with data collection, data
cleaning, data preprocessing, and so on.

2. Build customer profiles using an improved decision-
tree learning algorithm [36] from the training data.
In this case, a decision tree is built from the training
data to predict if a customer is in the desired status
or not. One improvement in the decision tree
building is to use the area under the curve (AUC)
of the ROC curve [22], [35] to evaluate probability
estimation (instead of the accuracy). Another im-
provement is to use Laplace Correction to avoid
extreme probability values.

3. Search for optimal actions for each customer (see
Section 2.2 for details). This is a key component of
the data mining system Proactive Solution [10].

4. Produce reports for domain experts to review the
actions and selectively deploy the actions.

In the next section, we will discuss the leaf-node

search algorithm used in Step 3 (search for optimal
actions) in detail.

2.2 Leaf-Node Search in the Unlimited Resource
Case

We first consider the simpler case of unlimited resources

where the case serves to introduce our computational

problem in an intuitive manner. The leaf-node search

algorithm searches for optimal actions to transfer each leaf

Service
L M H
Sex Rate
F M 0.1 L H
0.9 0.2 0.8 0.5

Fig. 1. An example of customer profile.

node to another leaf node with a higher probability of being
in a more desirable class. After a customer profile is built,
the resulting decision tree can be used to classify, and more
importantly, provide the probability of customers in the
desired status such as being loyal or high-spending. When a
customer, who can be either a training example used to
build the decision tree or an unseen testing example, falls
into a particular leaf node with a certain probability of being
in the desired status, the algorithm tries to “move” the
customer into other leaves with higher probabilities of
being in the desired status. The probability gain can then be
converted into an expected gross profit.

However, moving a customer from one leaf to another
means some attribute values of the customer must be
changed. This change, in which an attribute A’s value is
transformed from v; to v, corresponds to an action. These
actions incur costs. The cost of all changeable attributes are
defined in a cost matrix (see Section 2.3) by a domain
expert. The leaf-node search algorithm searches all
leaves in the tree so that for every leaf node, a best
destination leaf node is found to move the customer to. The
collection of moves are required to maximize the net profit,
which equals the gross profit minus the cost of the
corresponding actions.

Based on a domain-specific cost matrix (Section 2.3) for
actions, we define the net profit of an action to be as follows:

PNet = PE X Pgain, - ZCOST;, (1)

where Py, denotes the net profit, Py denotes the total profit
of the customer in the desired status, P, denotes the
probability gain, and COST; denotes the cost of each action
involved. In Section 3.1, we extend this definition to a
formal definition of the computational problem.

The leaf-node search algorithm for searching the
best actions can thus be described as follows:

Algorithm leaf-node search
1. For each customer x, do
2. Let S be the source leaf node in which z falls into;
3. Let D be a destination leaf node for x the maximum
net profit Py
4. Output (S, D, Pyet);

To illustrate, consider an example shown in Fig. 1, which
represents an overly simplified, hypothetical decision tree
as the customer profile of loyal customers built from a bank.
The tree has five leaf nodes (A, B, C, D, and E), each with a

46 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1,

probability of customers’ being loyal. The probability of
attritors is simply 1 minus this probability.

Consider a customer Jack who’s record states that the
Service = Low (service level is low), Sex = M (male), and
Rate = L (mortgage rate is low). The customer is classified
by the decision tree. It can be seen that Jack falls into the leaf
node B, which predicts that Jack will have only a 20 percent
chance of being loyal (or Jack will have an 80 percent chance
to churn in the future). The algorithm will now search
through all other leaves (A, C, D, and E) in the decision tree
to see if Jack can be “replaced” into a best leaf with the
highest net profit.

1. Consider leaf A. It does have a higher probability of
being loyal (90 percent), but the cost of action would
be very high (Jack should be changed to female), so
the net profit is a negative infinity.
2. Consider leaf C. It has a lower probability of being
loyal, so the net profit must be negative, and we can
safely skip it.
3. Consider leaf D. There is a probability gain of
60 percent (80 percent - 20 percent) if Jack falls into
D. The action needed is to change Service from L
(low) to H (high). Assume that the cost of such a
change is $200 (given by the bank). If the bank can
make a total profit of $1,000 from Jack when he is
100 percent loyal, then this probability gain
(60 percent) is converted into $600 (1,000 x 0.6) of
the expected gross profit. Therefore, the net profit
would be $400 (600 — 200).
4. Consider leaf E. The probability gain is 30 percent
(50 percent - 20 percent), which transfers to $300 of
the expected gross profit. Assume that the cost of the
actions (change Service from L to H and change Rate
from L to H) is $250, then the net profit of moving
Jack from B to E is $50 (300 — 250).
Clearly, the node with the maximal net profit for Jack is
D, with suggested action of changing Service from L to H.

Notice that in the above example, the actions suggested
for a customer-status change imply only correlations rather
than causality between customer features and status.
Similarly to other data mining systems, the actions should
be reviewed by domain experts before deployment. This is
the Step 4 of the leaf-node search algorithm given at the
beginning of this section.

2.3 Cost Matrix

In our discussion so far, we assume that attribute-value
changes will incur costs. These costs can only be deter-
mined by domain knowledge and domain experts. For each
attribute used in the decision tree, a cost matrix is used to
represent such costs. In many applications, the values of
many attributes, such as sex, address, number of children,
cannot be changed with any reasonable amount of money.
Those attributes are called “hard attributes.” For hard
attributes, users must assign a very large number to every
entry in the cost matrix.

If, on the other hand, some value changes are possible
with reasonable costs, then those attributes such as the
Service level, interest rate, and promotion packages are
called “soft attributes.” Note that the cost matrix needs not

JANUARY 2007

to be symmetric. One can assign $200 as the cost of
changing service level from low to high, but infinity (a very
large number) as the cost from high to low, if the bank does
not want to “degrade” service levels of customers as an
action.

One might ask why hard attributes should be included in
the tree building process in the first place since they can
prevent customers from being moved to other leaves. This
is because that many hard attributes are important in
accurate probability estimation of the leaves. When the
probability estimation is inaccurate, the reliability of the
prediction would be low, or the error margin of the
prediction would be high.

For continuous attributes, such as interest rates that can
be varied within a certain range, the numerical ranges can
be discretized first using a number of techniques for feature
transformation. For example, the entropy-based discretiza-
tion method can be used when the class values are known
[34]. Then, we can build a cost matrix for each attribute
using the discretized ranges as the index values.

3 POSTPROCESSING DECISION TREES:
THE LimITED RESOURCE CASE

3.1 A Formal Definition of BSP

Our previous case considered each leaf node of the decision
tree to be a separate customer group. For each such
customer group, we were free to design actions to act on
it in order to increase the net profit. However, in practice, a
company may be limited in its resources. For example, a
mutual fund company may have a limited number £ (say
three) of account managers, each manager can take care of
only one customer group. Thus, when such limitations
exist, it is a difficult problem to optimally merge all leave
nodes into k segments, such that each segment can be
assigned to an account manager. To each segment, the
responsible manager can several apply actions to increase
the overall profit.

This limited-resource problem can be formulated as a
precise computational problem. Consider a decision tree
DT with a number of source leaf nodes that correspond to
customer segments to be converted and a number of
candidate destination leaf nodes, which correspond to the
segments we wish customers to fall in. Formally, the
bounded segmentation problem (BSP) is defined as follows:
Given:

1. adecision tree DT built from the training examples,
with a collection S of m source leaf nodes and a
collection D of n destination leaf nodes (in Sec-
tion 3.3, we extend from a single decision tree to
multiple decision trees),

2. a prespecified constant k£ (k < m), where m is the
total number of source leaf nodes,

3. a cost matrix C(Attr;,u,v),i=1,2,..., which spe-
cifies the cost of converting an attribute Attr;’s value
from u to v, where v and v are indices for Attr;’s
values,

4. a unit benefit vector Bc(L;) denoting the benefit
obtained from a single customer z when the z
belongs to the positive class in a leaf node

YANG ET AL.: EXTRACTING ACTIONABLE KNOWLEDGE FROM DECISION TREES 47

L;,;i=1,2,...,N, where N is the number of leaf
nodes in the tree DT, and

5. aset Ci.q of test cases.

A solution is a set of k goals {G;,i=1,2,...,k},
where each goal consists of a set of source leaf nodes S;;
and one designation leaf node D;, denoted as:
{Sij»ij=1,2,...,|Gi|} — D;), where S;; and D; are leaf
nodes from the decision tree DT. The meaning of a goal
is to transform customers that belong to the source
nodes S to the destination node D via a number of
attribute-value changing actions. Our aim is to find a
solution with the maximal net profit (defined below).

Goals. Given a source leaf node S and a destination leaf
node D, we denote the objective of converting a customer z
from S to D as a goal, and denote it as S — D. The concept
of a goal can be extended to a set of source nodes: To
transform a set of leaf nodes S; to a designation leaf node D,
the goal is {S;,i =1,2,...} — D.

Actions. In order to change the classification of a
customer « from S to D, one may need to apply more than
one attribute-value changing action. An action A is defined
as a change to an attribute value for an attribute Attr.
Suppose that for a customer z, the attribute Attr has an
original value u. To change its value to v, an action is
needed. This action A is denoted as A = {Attr,u — v}.

Action Sets. A goal is achieved by a set of actions. To
achieve a goal of changing a customer = from a leaf node
S to a destination node D, a set of actions that contains
more than one action may be needed. Specifically,
consider the path between the root node and D in the
tree DT. Let {(Attr, =v;),i=1,2,...,Np} be set of
attribute-values along this path. For z, let the correspond-
ing attribute-values be {(Attr; =u;),i=1,2,...,Np}.
Then, the actions of the form can be generated:
ASet = {(Attri,u; — v;),i =1,2,...,Np}, where we re-
move all null actions where w; is identical to v; (thus,
no change in value is needed for an Attr;). This action set
ASet can be used for achieving the goal S — D.

Net Profits. The net profit of converting one customer z
from a leaf node S to a destination node D is defined as
follows: Consider a set of actions ASet for achieving the
goal S — D. For each action Attr;,u — v in ASet, there is a
cost as defined in the cost matrix: C(Attr;, u,v). Let the sum
of the cost for all of ASet be Ciotal, S — D(x).

Let the probability of z to belong to the positive class in S
be p(+|z, S). Likewise, let the probability of a customer in D
be in the positive class be p(+|z, D). Recall that from the
input, we have a benefit vector Bo(L) for the leaf nodes L.
Thus, we have B¢(S) as the benefit of belonging to node S
and B¢ (D) as the benefit of belonging to node D. Then, the
unit net profit of converting one customer x from S to D is:

Pumt(x’ S — D) :(BC(D) *p(+|:l:,D) — BC(S) *P(+|$,S))
- Ctotala S — D(CE)
(2)

Then, for a collection C}.; of all test cases that fall in node S,
the total net profit of applying an action set for achieving
the goal S — D is:

P(Ct65t7 S - D) = Zl‘€cmrpumt (x7 S - D) (3)

Service

L H

Status Rate

A)/ E B C ; \< D
0.9 0.2 0.8 0.5

Fig. 2. An example decision tree.

When the index of S is ¢, and the index of D is j, we denote
P(Clest, S — D) as Py; for simplicity.

Thus, the BSP problem is to find the best k groups of
source leaf nodes {Group;,i =1,2,...,k} and their corre-
sponding goals and associated action sets to maximize the
total net profit for a given test data set Cy..

An Example. To illustrate, consider an example in Fig. 2.
Assume that for leaf nodes L; to L, the probability values
of being in the desired class are 0.9, 0.2, 0.8, and 0.5,
respectively. Now consider the task of transforming L, and
L, to a higher probability node, such that the net profit of
making all transformations is maximized. To illustrate the
process, consider a test data set such that there is exactly
one member that falls in each leaf node of this decision tree.

In order to calculate the net profit, we assume all leaf
nodes to have an initial benefit of one unit. For simplicity,
we also assume that the cost of transferring a customer is
equal to the number of attribute value changes multiplied
by 0.1. Thus, to change from L, to L;, we need to modify the
value of the attribute Status, with a profit gain of
(0.9x1-0.2x1)—0.1=0.6.

To illustrate the limited resources problem, consider
again our decision tree in Fig. 2. Suppose that we wish to
find a single customer segment (k = 1). A candidate group
is {Lo, L4}, with a selected action set {Service — H, Rate —
C?} which can transform the group to node Lj. Assume that
Ly and L, only contain one example each. Transferring this
group to leaf node L3, Ly changes the service level only and,
thus, has a profit gain of (0.8 —0.2) x 1 —0.1 =0.5 and Ly
has a profit gain of (0.8 — 0.5) x 1 — 0.1 = 0.2. Thus, the net
benefit for this group is 0.2+ 0.5 = 0.7.

The BSP problem has an equivalent matrix representa-
tion. From (2) and (3), we obtain a profit matrix M =
(Pj),i=1,...,m;j=1,...,n formed by listing all source
leaf nodes S; as the row index and all the action sets ASet;,
for achieving the goal (S; — D;), as the column index (here,
we omit 5; in the column headings). In this matrix M,
(P;j > 0), 1 <i<m (where m is the number of source leaf
nodes), and 1 < j <n (n is the number of destination leaf
nodes). P;; denotes the profit gain computed by applying
ASet; to S; for all test-case customers that falls in S;. If
P; >0, that is, applying ASet; to transfer S; to the
corresponding destination leaf node can bring about a net
profit, we say that the source leaf node S; can be covered by
the action set ASet;. From (2) and (3), the computation of
the profit matrix M(.,.) can be done in O(m % n).

As an example of the profit matrix computation, a part
of the profit matrix corresponding to the source leaf node

48

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1,

JANUARY 2007

TABLE 1
An Example of the Profit Matrix Computation

ASet1 (L2) (G03.1=—> Ll)

ASetQ (Lz) (Goal=—> L3)

AS€t3 (L2) (Goa1=—> L4)

Ly 0.6 0.4 0.1
Ly
TABLE 2
lllustrating the Greedy-BSP Algorithm
Source Nodes ASety ASets ASets ASety
(Goal= — D) | (Goal= — Dsg) | (Goal= — Ds3) | (Goal= — Dy)
S1 2 0 1 1
Sa 0 1 0 0
S3 0 1 0 0
Sy 0 1 0 0
Column Sum 2 3 1 1
Selected Actions X

L, is as shown in Table 1 where ASet; = {Status = A},
ASety = {Service = H, Rate = C}, and ASet; = {Service =
H, Rate = D} (here, for convenience, we ignore the source
value of the attributes, which is dependent on the actual
test cases).

Then, the BSP problem becomes one of picking the best
k columns of matrix A/ such that the sum of the maximum
net profit value for each source leaf node among the
k columns is maximized. When all P,; elements are of unit
cost, this is essentially a maximum coverage problem [19],
which aims at finding k sets such that the total weight of
elements covered is maximized, where the weight of each
element is the same for all the sets. A special case of the BSP
problem is equivalent to the maximum coverage problem
with unit costs. Thus, we know that the BSP problem is
NP-Complete. Our aim will then be to find approximation
solutions to the BSP problem.

3.2 Algorithms for BSP

Our first solution is an exhaustive search algorithm for
finding the k optimal action sets with maximal net profit.

Algorithm Optimal-BSP
1. for each ASet; € A, 1 <1 <n, choose any combination of
k action sets, do
1.1. Group the leaf nodes into k groups
2.1. Evaluate the net benefit of the action sets on the
groups
end for
2. return the k action sets with associated leaf node groups
that have the maximal net benefit using (2) and (3).

Since the optimal-BSP needs to examine every combination
of k action sets, the computational complexity is O(n"),
which is exponential in the value of k.

To avoid the exponential worst-case complexity, we have
also developed a greedy algorithm which can reduce the
computational cost and guarantee the quality of the solution

at the same time. Consider the following generalization of
the maximum coverage problem. Given a set with m leaf
nodes Ly = {Ly, Lo,..., Ly}, each associated with a differ-
ent profit P;; (Pj; > 0) for each action set ASet;, 1 < j < n.
Each ASet; can be denoted as a subset of L; which only
contains the covered leaf nodes L; for P;; >0, 1 <i<m.
The goal is to choose k action sets so as to maximize the net
profit of covered leaf nodes. We can solve this problem
using a greedy algorithm below, where C' is the resulting
k action sets.

We consider the intuition of the Greedy-BSP algorithm
using an example profit matrix A as shown in Table 2,
where we assume a k = 2 limit. In this table, each number is
a profit Pj; value computed from the input parameters. The
greedy algorithm processes this matrix in a sequential
manner for k iterations. In each iteration, it considers
adding one additional column of the A/ matrix, until it has
considered all k£ columns. Initially, Greedy-BSP starts with
an empty result set C' = {). The algorithm then compares all
the column sums that corresponds to converting all leaf
nodes S; to S, to each destination leaf node D; in turn. It
found that ASet; = (— D;) has the current maximum
profit of three units. Thus, the resultant action set C is
assigned to {ASet,}.

Next, Greedy-BSP considers how to expand the customer
groups by one. To do this, it considers which additional
column will increase the total net profit to a highest value, if
we can include one more column. As can be seen from
Table 3, if we in addition consider the first column, then the
node S; can choose to be converted to D;, instead of D, as
in Table 2. In that case, the profit of C = {ASet;, ASet,} can
be increased by two units, which is the maximum increase
among all other columns. Thus, we choose this subset to be
the current action set C.

Because we have now reached the resource limit k = 2,
we will terminate with the action set C' and two groups of
leaf nodes: Gy = {51}, and Gy = {52, S5, S4}. This example

YANG ET AL.: EXTRACTING ACTIONABLE KNOWLEDGE FROM DECISION TREES 49
TABLE 3
lllustrating the Greedy-BSP Algorithm (Continued)
Source Nodes ASety ASets ASets ASety
(Goal= — D7) | (Goal= — D) | (Goal= — D3) | (Goal= — Dy)
S1 2 0 1 1
S 0 1 0 0
S3 0 1 0 0
Sy 0 1 0 0
Column Sum 2 3 1 1
Selected Actions X X

returns a total net profit of 2 + 3 = 5 units, which is also the
optimal solution.
The algorithm Greedy-BSP is now described as follows:

Algorithm Greedy-BSP
1. C « §; Compute the matrix M = (P;;) using (2) and (3);
2.forl=1tok

2.1. select ASet; € A that maximizes

maz{P;},j=1,2,...,1
S;€cover(CUASet;)

(4)

22.C +— CUASet;
end for
3. return C

This algorithm can be shown to perform close to the optimal
result in our subsequent analysis. In particular, we can
exploit the complexity analysis of the approximate max-
imum coverage algorithm given in [21] to reach this result.
In order to prove the approximation ratio of the solution
returned by Greedy-BSP to one by Optimal-BSP, we first
need to establish the following two lemmas.

If we let Profit(Greedy) and Profit(OPT) be the net
profit returned by the Greedy-BSP algorithm and the
Optimal-BSP algorithm, respectively, we have the following
property.

Lemma 1. Forl =1,2,...,k, let ASet be an action set. We have
Profit(U._, ASet;) — Profit(Ul_} ASet;)
(Profit(OPT) — Profit(UZ} ASet;)

> .
- k

()

Proof. Let the optimal solution returned by Optimal-BSP
consists of k optimal action sets. Suppose Greedy-BSP has
already selected (I — 1) action sets so far, m of which are
contained in the optimal solution. Now, we consider the
situation where Greedy-BSP selects the next ASet; action
set. Because of the heuristic strategy used in the Step 2.1
of the Greedy-BSP algorithm, Profit(U!_;ASet;) —
Profit(UlZ} ASet;) represents the additional profit gain
achieved by ASet;. In addition, ASet; should be a set that

can achieve maximal additional profit gain. On the other
hand, assume Greedy-BSP selects those (k — m) optimal
action sets in the optimal solution and yet have not
chosen by itself, the profit gain of this batch procedure is
at least Profit(OPT) — Profit(UlZ} ASet;). According to
the pigeonhole principle, there must exist one single action

set in the remaining (k — m) optimal action sets, whose
Profit(OPT)—Profit(U_

L ASet; . . .
—m ‘). Since this action

profit is at least
set is also a candidate for selecting the next ASet;, we

have
Profit(U._, ASet;) — Profit(Ul_} ASet;)
N Profit(OPT) — Profit(UZ ASet;)
- k—m
N Profit(OPT) — Profit(UZ} ASet;)
> A .
O
Lemma 2. For [=1,2,...,k, we have
!
Profit(U._, ASet;) > [1 - (1 _E> Profit(OPT). (6)

Proof Sketch. The proof can be done by induction using
Lemma 1, similar to the proof of Lemma 3.13 in [21]. O

Based on the above two established lemmas, we have the
following theorem:

Theorem 1. The Greedy-BSP is a (1 —Y)-approzimation
algorithm.

k-
Profit(Greedy) > [1 — (1 — %) Profit(OPT)

> (1 - 2) Profit(OPT). "

Proof. Theorem 1 follows directly from Lemma 2 by

letting ! = k. In addition, because limj o1 — (1 — %)k =

1-1 and 1-(1 — 1% is decreasing, it follows that

) k
1-(1-HF>1-1L O

50 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1,

3.3 Improving the Robustness Using Multiple Trees
The major advantage of the Greedy-BSP algorithm is that it
can significantly reduce the computational cost while also
guaranteeing the high quality of the solution at the same
time. In Greedy-BSP, the built decision tree always choose
the most informative attribute as the root node. However, as
pointed out in [26], many top-ranked attributes may exhibit
similar discriminating merits with little difference. It is
worthwhile to employ different top-ranked attributes as the
root nodes for building multiple decision trees. Therefore,
we have also proposed an algorithm referred to as Greedy-
BSP-Multiple which is based on integrating an ensemble of
decision trees in this paper. Ensemble-based methods have
been shown to improve the robustness of machine learning
systems greatly [45], [26], [44]. The basic idea is to construct
multiple decision trees using different top-ranked attributes
as their root nodes. For each set of test cases, the ensemble
decision trees return the median net profit and the
corresponding leaf nodes and action sets as the final
solution. We believe that this method will be more robust
when the training data set changes, because each change
can only alter a small number of trees. Thus, we expect that
when the training data are unstable, the ensemble-based
decision tree methods can perform much more stable as
compared to results from the single decision trees.

Algorithm Greedy-BSP-Multiple
1. Given a training data set described by p attributes
1.1. calculate gain ratios to rank all the attributes in
an descending order
12.fori=1top
use the ith attribute as root node to
construct the ith decision tree
end for
2. Take a set of testing examples as input
21.fori=1top
use the ith decision tree to calculate the net
profit by calling algorithm Greedy-BSP
end for
2.2. return k action sets corresponding to the median
net profit

The added advantage of Greedy-BSP-Multiple is that it is
more robust with respect to different sampled training data.
Since Greedy-BSP-Multiple relies on building multiple
decision trees to calculate the median net profit, different
sampling can only affect the construction of a small portion
of decision trees. Therefore, Greedy-BSP-Multiple can
produce net profit with less variance.

3.3.1 Difference from Previous Works

In business marketing, most of the marketing planning
activities have been done in a human-heavy process, which
is carried out by hand [4], [13]. Collecting customer data
and using the data for direct marketing operations has
increasingly become possible, thanks to the popularity of
data mining technology. One approach is known as
“database marketing,” which is defined as creating a bank
of information about individual customers from their
orders, enquiries, and other activity, using it to analyze
the customer behavior and developing intelligent strategies

JANUARY 2007

[37], [33], [15]. An important computational aspect is to
segment a customer group into subgroups, often in terms a
binary decision variable such as customer’s willingness to
buy a product or not to buy. This segmentation corresponds
to traditional classification learning in machine learning,
such as decision trees [36], where the aim is to generate a
ranking function for the customers sorted on their like-
lihood to buy a product (or stay loyal to the company), so
that a “gain chart” or “lift chart” can be created for human
analysis. Analytical techniques such as linear and logistic
regression can be used to implement the ranking functions
[15]. The decision then is on which subset of the customers
to market a certain product to, in order to maximize the
total net profit [27]. However, even though the segmenta-
tions can be discovered using an machine learning
algorithm, the actions are still to be discovered by human
experts.

Machine learning and data mining research has con-
tributed to the business practice by addressing some new
issues in marketing. One issue is that the typical marketing
data are cost sensitive, in that the false positive and false
negative costs are different. To solve this problem, [43], [14]
proposed the framework of cost-sensitive learning by
incorporating a cost matrix for balancing the total expected
misclassification costs. In addition to the cost issues, the
number of items belonging to one class may greatly
outnumber those in another class. As mentioned above,
machine learning methods have traditionally been applied
to produce a ranking of customers by the estimated
probability to respond to a marketing action, and selecting
some top portion of the ranked list [27], [31]. When the data
are biased, traditional accuracy-based measurements are no
longer adequate. In order to solve this problem, Wang et al.
[22] presented an association rule-based approach that
differentiates between the positive class and the negative
class members the most, and use these rules to for
segmentation.

Another direction in machine learning is to apply
sequential learning techniques using reinforcement learning
and Markov decision processes. For example, [43], [34], [2]
aimed to find a policy with which to direct an optimal action
based on a customer’s current status. Here, the objective is
to maximize the total benefits accrued over a period of time,
after a sequence of actions is taken, when deciding whether
to take an action or not.

However, all of the above research works are aimed at
either finding a segmentation of the customer database, or
deciding to take a predefined action for every customer
based on that customer’s current status. None of them
addressed the issue of discovering actions that might be
taken from a customer database. To the best of our
knowledge, ours is the first such work in machine learning
and business marketing that addressed this action-discov-
ery issue.

3.4 Experimental Evaluation

In order to evaluate the performance of our proposed
algorithm, experiments were carried out on a real data set
from an insurance company and four data sets from the UCI
ML repository [8].

YANG ET AL.: EXTRACTING ACTIONABLE KNOWLEDGE FROM DECISION TREES 51

5.54 T T

5.52

o
o
T

548

Net Profit ($)

546

5.44 i

' Greedy-BSP
c | —&— Optimal-BSP
5.422 .

3 4 5
Number of Action Sets: k

Fig. 3. Net profit versus number of action sets.

3.4.1 Experiments on Real Data

Experiments were first performed on a real data set
obtained from an insurance company in Canada. This data
set consists of more than 25,000 records for customers who
have the status of “stay” or “leave” the insurance company,
which are referred to as positive and negative examples,
respectively. Each example is described by more than
60 attributes, many of which are not hard attributes. About
20 attributes are soft attributes with reasonable costs for
value changes. We constructed a cost matrix for each
attribute contained in the data set according to their
semantics in the real domain.

In our experiment, we first selected 10 attributes based
on the Gain Ratio criterion. Since this data set has a highly
unbalanced data distribution, we randomly sampled
6,000 examples as the training data, with the ratio of
positive and negative as one to one, in order to prevent a
decision tree from predicting all the customers to be
negative. We also randomly sampled 300 examples from
the rest of the data to be used as the testing data. In this
setting, we built a decision tree with 153 leaf nodes. Eighty-
seven of them are considered negative leaf nodes because
their probability of being positive is less than 50 percent,
while the other 66 positive leaf nodes.

We applied Greedy-BSP and Optimal-BSP to calculate
the prespecified k action sets with maximal net profit. Fig. 3

TABLE 4

Selected Action Sets versus Number of Action Sets
#Action Selected Action Sets

Sets Greedy-BSP Optimal-BSP

k=2 {A3, Az} {A1, Ago}

k=3 {As, Aso, Azo} {A1, Ago, Azg}

k=4 {A1, A3, Az, Age} {A1, A3, A2, Ao}

k=5 | {A1, A3, A, Az, Asa} | {A1, A3, Ay, Aog, Asga}

A — Greedy-BSP
—&— Optimal-BSP

Runtime (seconds)

—1 1 1
2 3 4 5
Number of Action Sets: k

Fig. 4. Runtime versus number of action sets.

shows the net profit obtained by the two algorithms with
respect to different numbers of action sets k. As shown in
the figure, the net profit increases for both Greedy-BSP and
Optimal-BSP with an increasing number of action sets k.
This is because if more customers are transformed to a
desired status, it is more possible to obtain higher profit. In
addition, an important property to note is that, for a specific
k, the net profit obtained by Greedy-BSP is very close to or
the same as that by Optimal-BSP, which can guarantee the

quality of solution provided by Greedy-BSP.
Table 4 compares the k action sets selected by both

Greedy-BSP and Optimal-BSP with respect to different
numbers of action sets k. There are a total of 66 action sets
provided by the decision tree built in our experiments. As
shown in the table, the action sets selected by Greedy-BSP
are very close to that by Optimal-BSP for the same number

of action sets k.
In our example, each action set contains a number of

actions; for example, the action set A3 consists of four
different actions (attribute changes), that is,

x10°
- _ - —
T T I I T T
6 | 4
J, A !4.1 T
! I ! | l | ! |
e L [[
e 55 | | | oA
= L I I I
E | | |
a L L L
z 5t 1
n T T T
45f 1
i~ " Greedy-BSP-Multiple
|:| Greedy-BSP
4L L L L L 1 1 1 — J

2 3 4 5 2 3 4 5
Number of Action Sets: k

Fig. 5. Net profit versus number of action sets.

52 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1,

JANUARY 2007

TABLE 5
UCI Data Sets Used in the Experiments
Name of data sets | No. of attributes | No. of training data | No. of testing data
German 20 300 100
Australian 14 500 100
Adult 14 10000 10000
Endgame 9 400 100
x10° x10°
5.8 66
ssl 6.5} n
650
5.4f
645
& 52 & e4f
? 5 E 6.35
3 2 ol
48}
6.25}
46}
62f
2‘ . —&— Optimal-BSP) . —+&— Optimal-BSP
42, 3 4 5 &1 3 4 5

Number of Action Sets: k

(@)

10.5

9.5r

Net Profit ()

A — Greedy-BSP |1
—&— Optimal-BSP
2 3 4 5
Number of Action Sets: k

(©)

Number of Action Sets: k

(b)

Net Profit ()

Greedy-BSP
—&— Optimal-BSP
2 3 4 5
Number of Action Sets: k

()

Fig. 6. (a) German. (b) Australian. (c) Adult. (d) Endgame. Net profit comparisons of Optimal-BSP and Greedy-BSP on four UCI data sets.

{as : $0 — $249 — $500 — $999, a7 : F — E,
ag : DIV — WID, ag : 1980 — 1989 — 1990 — 1994}.

As described above, there are a total of 87 negative leaf
nodes in our decision tree. By applying the action set A3, a
group of customers falling into five negative leaf nodes
{Ls, L3, L13, L5, L75 } can be transferred to third positive leaf
node, which corresponds to a customer segmentation.

Fig. 4 compares the runtime of the two algorithms with
respect to different numbers of action sets k. Note that the
runtime of y-axis uses a logscale. As expected, Greedy-BSP
is much more efficient and scalable than Optimal-BSP. For
Greedy-BSP, the runtime is 0.20 seconds irrespective of the
number of action sets k. In contrast, the runtime for
Optimal-BSP increases exponentially with the increasing

number of action sets k. This is because the optimal
algorithm needs to compare many more combinations for
larger values of k in order to obtain maximal net profits.
We performed another set of experiments to evaluate the
robustness of Greedy-BSP and Greedy-BSP-Multiple (where
10 decision trees are used in each ensemble). In this
experiment, we randomly selected 300 examples from the
whole data set as the testing data. From the rest of the data,
we randomly generated 10 training data sets of 6,000 exam-
ples, where the ratio of positive and negative equals 1:1. We
applied the two algorithms on these 10 groups of data.
Fig. 5 compares the performance of the two algorithms with
respect to different numbers of actions sets k in a box plot
(the figure shows a box and whisker plot for each set of

YANG ET AL.: EXTRACTING ACTIONABLE KNOWLEDGE FROM DECISION TREES 53

. — Greedy-BSP
—+&— Optimal-BSP

Runtime (seconds)

2 3 4 5
Number of Action Sets: k

(@)

£ Greedy-BSP
—+&— Optimal-BSP

3 4 5
Number of Action Sets: k

(©

> — Greedy-BSP
—=&— Optimal-BSP

Runtime (seconds)

2 3 4 5
Number of Action Sets: k

(b)

A — Greedy-BSP
—&— Optimal-BSP

2 3 4 5
Number of Action Sets: k

(@)

Fig. 7. Runtime comparisons of Optimal-BSP and Greedy-BSP on four UCI data sets. (a) German. (b) Australian. (c) Adult. (d) Endgame.

experiments, where a box has lines at the lower quartile,
median, and upper quartile values. The whiskers are lines
extending from each end of the box to show the extent of
the rest of the data. Outliers are data with values beyond the
ends of the whiskers.). We can see from the figure that
Greedy-BSP-Multiple can produce the net profit values with
much less variance than Greedy-BSP when 10 sets of
randomly sampled examples are used for training. Since
Greedy-BSP-Multiple relies on building multiple decision
trees to calculate the median net profit, different sampling
can only affect the construction of a small portion of
decision trees, while the rest are left unchanged. Therefore,
we can conclude that Greedy-BSP-Multiple is more robust
than Greedy-BSP.

3.4.2 Experiments on UCI Data

We also performed experiments on four UCI data sets to
evaluate the performance of the algorithms. The four data
sets used in our experiments are listed in Table 5. These
data sets were chosen because they have binary classes and
a sufficient number of examples. In our experiments, we
also used Gain Ratio [32] criterion to select eight significant
attributes for each data set. For Greedy-BSP and Optimal-
BSP, we calculated the net profit based on a decision tree
whose root node is the attribute with the maximal gain ratio
value. For Greedy-BSP-Multiple, the net profit is computed

using eight decision trees with different attributes as the root
node. For each data set, we randomly sampled the training
data set with the ratio of positive and negative as one to
one. Another independent data set generated randomly is
used for testing.

Fig. 6 shows the net profit obtained by Optimal-BSP and
Greedy-BSP on the four data sets. We can also observe that,
for each data set, the values of net profit computed by
Greedy-BSP are very close to or the same as those found by
Optimal-BSP with respect to the same number of action sets k.

Fig. 7 compares the efficiency of Optimal-BSP and
Greedy-BSP on the four data sets. Note that the values of
y-axis use a logscale in the figure. We can observe that the
runtime of Optimal-BSP increases exponentially as the
number of action sets k increases. This makes Optimal-BSP
intractable especially when the decision tree has a large
number of positive and negative leaf nodes. In contrast, the
runtime of Greedy-BSP remains approximately the same
regardless of different numbers of action sets k. Therefore,
Greedy-BSP is much more efficient and scalable than
Optimal-BSP.

We also performed experiments to evaluate the robust-
ness of Greedy-BSP and Greedy-BSP-Multiple on the four
data sets. In this experiment, for each data set, we randomly
generated 10 training data sets, each of which has the same
positive and negative examples. The same testing data set

54

x10°

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

1”7 Greedy-BSP-Multiple
[|[] Greedy-BSP

& — T
£, - | !
S 6 _ | _ -
: T | |
z 5f T .J..‘ 'J1 D |Jl iJ1‘
[t [[
[i |
L | | 1 | |
4 Lip [‘ A n —a
L T ! |
3t I ! L
i €L
ol L
1 ,
2 3 4
Number of Action Sets: k
(@)
x10°
25l I~ Greedy-BSP-Multiple
[Greedy-BSP
2l
&
e
o
& 151
g —
_ 1 i
1 1 !
T D Ij—] _JI_— l -
R +
=
7 £ L +
05F L
2 5

Number of Action Sets: k

(©)

VOL. 19, NO. 1, JANUARY 2007

x107

1”7 Greedy-BSP-Multiple
L|[_] Greedy-BSP

N »
o w o
-- -

N

Net Profit ($)

- &
-
_rw:}ﬂ
HF
_ F4 |-
SR SR
SILSE
AAIZZLAA‘

051

Number of Action Sets: k

(b)

x10°

I~ Greedy-BSP-Multiple -
1311 [] Greedy-BSP I

Net Profit ($)
© 3
|
H o
L. 4
-
Ko

Number of Action Sets: k

(d)

Fig. 8. Robustness comparisons of Greedy-BSP and Greedy-BSP-Multiple on four UCI data sets. (a) German. (b) Australian. (c) Adult. (d) Endgame.

was used for evaluation. Fig. 8 shows the net profit obtained
by the two algorithms with respect to different sampled
training data. We can also observe that, when different
sampled examples are used for training, Greedy-BSP-
Multiple can produce the net profit with much less variance
than Greedy-BSP. Therefore, Greedy-BSP-Multiple is more
robust than Greedy-BSP.

We conclude from our experiments that, Greedy-BSP can
find k action sets with maximal net profit, which is very
close to those found by Optimal-BSP, at least for small
values of k for which Optimal-BSP terminates in a reason-
able amount of time. At the same time, Greedy-BSP can
scale well with an increasing number of action sets k, which
is more efficient than Optimal-BSP. In addition, by building
multiple decision trees, Greedy-BSP-Multiple is more
robust than Greedy-BSP when different sampled examples
are used for training.

4 CoONCLUSIONS AND FUTURE WORK

Most data mining algorithms and tools produce only the
segments and ranked lists of customers or products in their
outputs. In this paper, we present a novel technique to take
these results as input and produce a set of actions that can
be applied to transform customers from undesirable classes
to desirable ones. For decision trees, we have considered

two broad cases. The first case corresponds to unlimited
resources, and the second case corresponds to the limited
resource-constraint situations. In both cases, our aim is to
maximize the expected net profit of all the customers. We
have found a greedy heuristic algorithm to solve both
problems efficiently and presented an ensemble-based
decision-tree algorithm that use a collection of decision
trees, rather than a single tree, to generate the actions. We
show that the resultant action set is indeed more robust
with respect to training data changes.

The results discussed in this paper offer effective
solutions to intelligent CRM for enterprises. Our initial
applications case study (in unlimited resources case,
reported in [28], [42]) has shown strong promise in applying
this class of postprocessing techniques in practice.

In our future work, we will research other forms of
limited resources problem as a result of postprocessing data
mining models and evaluate the effectiveness of our
algorithms in the real-world deployment of the action-
oriented data mining.

ACKNOWLEDGMENTS

The authors would like to thank Hong Kong RGC for
supporting this work under grant HKUST6187/04E. They
also thank the anonymous referees for their comments.

YANG ET AL.: EXTRACTING ACTIONABLE KNOWLEDGE FROM DECISION TREES

REFERENCES

(1]
(2]

(3]

4

(5]

o]
(7]
(8]
]
[10]

(1]
[12]

[13]

[14]

[15]
[16]
(171
(18]
[19]
[20]
(21]

(22]

(23]

(24]

(25]
[26]

[27]

(28]

(29]

(30]

The kdd-cup-98 result: http://www kdnuggets.com/meetings/
kdd98/kdd-cup-98-results.html, 2005.

N. Abe, E. Pednault, H. Wang, B. Zadrozny, W. Fan, and C. Apte,
“Empirical Comparison of Various Reinforcement Learning
Strategies for Sequential Targeted Marketing,” Proc. Second IEEE
Int’l Conf. Data Mining (ICDM ’02), 2002.

R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 20th Int’l Conf. Very Large Data Bases
(VLDB '94), pp. 487-499, Sept. 1994.

Bank Marketing Association, Building a Financial Services Plan:
Working Plans for Product and Segment Marketing, Financial
Sourcebooks, 1989.

M. Belkin, P. Niyogi, and V. Sindhwani, “On Manifold Regular-
ization,” Proc. 10th Int’l Workshop Artificial Intelligence and Statistics,
pp- 17-24, Jan. 2005.

A. Berson, K. Thearling, and S.J. Smith, Building Data Mining
Applications for CRM. McGraw-Hill, 1999.

G. Bitran and S. Mondschein, “Mailing Decisions in the Catalog
Sales Industry,” Management Science, vol. 42, pp. 1364-1381, 1996.
C.L. Blake and C.J. Merz, “UCI Repository of Machine Learning,”
www.ics.uci.edu/~mlearn/mlrepository.html, 1998.

J.R. Bult and T. Wansbeek, “Optimal Selection for Direct Mail,”
Marketing Science, vol. 14, pp. 378-394, 1995.

M.-S. Chen,]. Han, and P.S. Yu, “Data Mining: An Overview from
a Database Perspective,” IEEE Trans. Knowledge And Data Eng.,
vol. 8, pp. 866-883, 1996.

N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines. Cambridge Univ. Press, 2000.

W. Desarbo and V. Ramaswamy, “Crisp: Customer Response
Based Iterative Segmentation Procedures for Response Modeling
in Direct Marketing,”]. Direct Marketing, vol. 8, pp. 7-20, 1994.

S. Dibb, L. Simkin, and]. Bradley, The Marketing Planning
Workbook. Routledge, 1996.

P. Domingos, “Metacost: A General Method for Making Classi-
fiers Cost Sensitive,” Proc. ACM Conf. Knowledge Discovery and
Data Mining, pp. 155-164, 1999.

R.G. Drozdenko and P.D. Drake, Optimal Database Marketing. Sage
Publications, 2002.

J. Dyche, The CRM Handbook: A Business Guide to Customer
Relationship Management. Addison-Wesley, 2001.

C. Elkan, “The Foundations of Cost-Sensitive Learning,” Proc.
17th Int’l Joint Conf. Artificial Intelligence (IJCAI '01), 2001.

W. Fan, SJ. Stolfo, J. Zhang, and P.K. Chan, “Adacost:
Misclassification Cost-Sensitive Boosting,” Proc. 16th Int’l Conf.
Machine Learning, pp. 97-105, 1999.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NPCompleteness. WH Freeman, 1979.

B.J. Goldenberg, CRM Automation. Prentice Hall, 2002.

D.S. Hochbaum, “Approximation Algorithms for Np-Hard Pro-
blems,” chapter 3, p. 136. PWS Publishing Company, 1995.

J. Huang and C.X. Ling, “Using Auc and Accuracy in Evaluating
Learning Algorithms,” IEEE Trans. Knowledge and Data Eng.,
vol. 17, no. 3, pp. 299-310, 2005.

D.A. Keim and H.-P. Kriegel, “Visualization Techniques for
Mining Large Databases: A Comparison,” IEEE Trans. Knowledge
and Data Eng., special issue on data mining, vol. 8, no. 6, pp. 923-
938, Dec. 1996.

R. Kohavi and M. Sahami, “Error-Based and Entropy-Based
Discretization of Continuous Features,” Proc. Second Int’l Conf.
Knowledge Discovery and Data Mining, pp. 114-119, 1996.

N. Levin and J. Zahavi, “Segmentation Analysis with Managerial
Judgment,” |. Direct Marketing, vol. 10, pp. 28-37, 1996.

J. Li and H. Liu, “Ensembles of Cascading Trees,” Proc. IEEE Int’l
Conf. Data Mining (ICDM '03), pp. 585-588, 2003.

C.X. Ling and C. Li, “Data Mining for Direct Marketing—Specific
Problems and Solutions,” Proc. Fourth Int'l Conf. Knowledge
Discovery and Data Mining (KDD '98), pp. 73-79, 1998.

C.X. Ling, T. Chen, Q. Yang, and J. Cheng, “Mining Optimal
Actions for Intelligent CRM,” Proc. IEEE Int’l Conf. Data Mining
(ICDM), 2002.

B. Liu, W. Hsu, L.-F. Mun, and H.-Y. Lee, “Finding Interesting
Patterns Using User Expectations,” IEEE Trans. Knowledge and
Data Eng., vol. 11, no. 6, pp. 817-832, 1999.

H. Mannila, H. Toivonen, and A.L. Verkamo, “Efficient Algo-
rithms for Discovering Association Rules,” Proc. Workshop Knowl-
edge Discovery in Databases (KDD '94), pp. 181-192, 1994.

(31]

(32]

[33]
(34]

(33]

(36]
(37]
(38]
(39]

[40]

[41]

(42]

(43]

(44]

[43]

55

B. Masand and G.P. Shapiro, “A Comparison of Approaches for
Maximizing Business Payoff of Prediction Models,” Proc. Second
Int’l Conf. Knowledge Discovery and Data Mining (ACM KDD ’96),
pp. 195-201, 1996.

T. Mitchell, “Machine Learning and Data Mining,” Comm. ACM,
vol. 42, no. 11, pp. 30-36, Nov. 1999.

E.L. Nash, Database Marketing. McGraw-Hill Inc., 1993.

E. Pednault, N. Abe, and B. Zadrozny, “Sequential Cost-Sensitive
Decision Making with Reinforcement Learning,” KDD ’02: Proc.
Eighth ACM SIGKDD Int’'l Conf. Knowledge Discovery and Data
Mining, pp. 259-268, 2002.

F. Provost, T. Fawcett, and R. Kohavi, “The Case against Accuracy
Estimation for Comparing Induction Algorithms,” Proc. 15th Int’l
Conf. Machine Learning, pp. 445-453, 1998.

J.R. Quinlan, C4.5 Programs for Machine Learning. Morgan
Kaufmann, 1993.

R. Shaw and M. Stone, Database Marketing. John Wiley and Sons,
1988.

V. Vapnik, The Nature of Statistical Learning Theory. Springer-
Verlag, 1995.

K. Wang, Y. Jiang, and A. Tuzhilin, “Mining Actionable Patterns
by Role Models,” Proc. IEEE Int’l Conf. Data Eng., 2006.

K. Wang, S. Zhou, Q. Yang, and].M.S. Yeung, “Mining Customer
Value: From Association Rules to Direct Marketing,” Data Mining
and Knowledge Discovery, vol. 11, no. 1, pp. 57-79, 2005.

A. Tuzhilin, Y. Jiang, K. Wang, and A. Fu, “Mining Patterns that
Respond to Actions,” Proc. IEEE Int’l Conf. Data Mining, pp. 669-
672, 2005.

Q. Yang, J. Yin, C.X. Ling, and T. Chen, “Postprocessing Decision
Trees to Extract Actionable Knowledge,” Proc. IEEE Conf. Data
Mining (ICDM "03), pp. 685-688, 2003.

B. Zadrozny and C. Elkan, “Learning and Making Decisions When
Costs and Probabilities Are Both Unknown,” Proc. Seventh ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (ACM
SIGKDD '01), pp. 204-213, 2001.

X. Zhang and C.E. Brodley, “Boosting Lazy Decision Trees,” Proc.
Int’l Conf. Machine Learning (ICML), pp. 178-185, 2003.

Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling Neural Networks:
Many Could Be Better Than All,” Artifical Intelligence, vol. 137,
nos. 1-2, pp. 239-263, 2002.

Qiang Yang received the PhD degree from
the University of Maryland, College Park. He
is a faculty member in the Hong Kong
University of Science and Technology’s De-
partment of Computer Science and Engineer-
ing. His research interests are Al planning,
machine learning, case-based reasoning, and
data mining. He is a senior member of the
IEEE and an associate editor for the IEEE
Transactions on Knowledge and Data Engi-

neering and IEEE Intelligent Systems.

Jie Yin received the BE degree in computer
science from the Xi'an Jiaotong University in
2001. Starting from the Fall of 2001, she has
been a PhD student in the Department of
Computer Science and Engineering at the Hong
Kong of Science and Technology. Her research
interests include artificial intelligence, data
mining, and pervasive computing.

56 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

Charles Ling received the MSc and PhD
degrees from the Department of Computer
Science at the University of Pennsylvania in
1987 and 1989, respectively. Since then, he has
been a faculty member of computer science at
the University of Western Ontario, Canada. His
main research areas include machine learning
(theory, algorithms, and applications), cognitive
modeling, and Al in general. He has published
more than 100 research papers in journals (such
as Machme Learning, JMLR, JAIR, TKDE, and Cognition) and
international conferences (such as IJCAI, ICML, and ICDM). He has
been an associate editor for the IEEE Transactions on Knowledge and
Data Engineering, and guest editor for several journals. He is also the
director of Data Mining Lab, leading data mining development in CRM,
bioinformatics, and the Internet. He has managed several data mining
projects for major banks and insurance companies in Canada.

Rong Pan received the BSc and PhD degrees in
applied mathematics from Zhongshan Univer-
sity, China, in 1999 and 2004, respectively. He is
a postdoctoral fellow at the Hong Kong Uni-
versity of Science and Technology. His research
interest includes machine learning, data mining,
and case-based reasoning.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

