I'ransaction Management
& Concurrency Control

EECS-4411 Winter 2017 X-Act Management & CC

Conflict Serializable Schedules

<+ Two schedules are if:
= Involve the same actions of the same transactions

= EBvery pair of conflicting actions is ordered the
same way

% Schedule S is if Sis
conflict equivalent to some serial schedule

EECS-4411 Winter 2017 X-Act Management & CC

|]

Example

<+ A schedule that is not conflict serializable:

T1: R(A), W(A), R(B), W(B)
T2 R(A), W(A), R(B), W(B)

A

B

% The cycle in the graph reveals the problem.
The output of T1 depends on T2, and vice-
versa.

EECS-4411 Winter 2017 X-Act Management & CC

Dependency Graph

22 : One node per Xact; edge
from T1i to 1j if Tj reads/writes an object last
written by Ti.

% Theorem: Schedule is contlict serializable if
and only if its dependency graph is acyclic

EECS-4411 Winter 2017 X-Act Management & CC

Review: Strict 2PL

<

L)

L)

= Hach Xact must obtain a on object
before reading, and an on object
before writing.

» All locks held by a transaction are released when
the transaction completes

If an Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

<+ Strict 2PL allows only schedules whose
precedence graph is acyclic

EECS-4411 Winter 2017 X-Act Management & CC

Two-Phase Locking (2PL)

% Two-Phase Locking Protocol

= Hach Xact must obtain a S (shared) lock on object
before reading, and an X (exclusive) lock on object
before writing.

If an Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

EECS-4411 Winter 2017 X-Act Management & CC

View Serializability
% Schedules S1 and S2 are if:

= If Ti reads initial value of A in S1, then Ti also reads
initial value of A in S2

= If Ti reads value of A written by Tj in S1, then Ti also
reads value of A written by Tj in S2

= [If Ti writes final value of A in S1, then Ti also writes
final value of A in S2

T1: R(A) W(A) T1: R(A),W(A)
T2: W(A) T2: W(A)
T3: W(A) | |T3: W(A)

EECS-4411 Winter 2017 X-Act Management & CC

Lock Management

» Lock and unlock requests are handled by the lock
manager

» Lock table entry:

= Number of transactions currently holding a lock
= Type of lock held (shared or exclusive)
= Pointer to queue of lock requests

% Locking and unlocking have to be atomic operations

% Lock upgrade: transaction that holds a shared lock
can be upgraded to hold an exclusive lock

EECS-4411 Winter 2017 X-Act Management & CC

Deadlocks

+ Deadlock: Cycle of transactions waiting for
locks to be released by each other.

< Two ways of dealing with deadlocks:
= Deadlock prevention
= Deadlock detection

EECS-4411 Winter 2017 X-Act Management & CC

Deadlock Prevention

% Assign priorities based on timestamps.
Assume Ti wants a lock that Tj holds. Two
policies are possible:

» Wait-Die: It Ti has higher priority, Ti waits for Tj;
otherwise Ti aborts

- Wound-wait: If Ti has higher priority, Tj aborts;
otherwise Ti waits

< If a transaction re-starts, make sure it has its
original timestamp

EECS-4411 Winter 2017 X-Act Management & CC 10

Deadlock Detection

& Create a
= Nodes are transactions

= There is an edge from Ti to Tj if Ti is waiting for Tj
to release a lock

+ Periodically check for cycles in the waits-for
graph

EECS-4411 Winter 2017 X-Act Management & CC 11

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3 5(C), R(C)

Q/O Q/O

EECS4411Wt 2017 XAtM nagemen t&CC

Multiple-Granularity Locks

+ Hard to decide what granularity to lock
(tuples vs. pages vs. tables).

< Shouldn’ t have to decide!
< Data “containers’ are nested:

Y

EECS-4411 Winter 2017 X-Act Management & CC

13

Solution: New Lock Modes, Protocol

< Allow Xacts to lock at each level, but with a
special protocol using new '

<+ Before locking an item, Xact ~|1s|1X|s

must set “intention locks”

on all its ancestors. - [V V[V]V
% For unlock, go from specific |[IS{V [V |V |V
to general (i.e., bottom-up). |IX|V |V |V
Like S & IX at S|V |V v
the same time. ¥ |V

EECS-4411 Winter 2017 X-Act Management & CC

14

Multiple Granularity Lock Protocol

% Bach Xact starts from the root of the hierarchy.

% To get S or IS lock on a node, must hold IS or IX
on parent node.

= What if Xact holds SIX on parent? S on parent?

% To get X or IX or SIX on a node, must hold IX or
SIX on parent node.

% Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting
locks at the leaf levels of the hierarchy.

EECS-4411 Winter 2017 X-Act Management & CC 15

Examples

|

+ T1 scans R, and updates a few tuples:

= T1 gets an SIX lock on R, then repeatedly gets an S
lock on tuples of R, and occasionally upgrades to
X on the tuples.

% T2 uses an index to read only part of R:

= T2 gets an IS lock on R, and repeatedly Tl od s
gets an S lock on tuples of R.
% T3 reads all of R: - j j j j
= T3 gets an S lock on R. dvlvly
» OR, T3 could behave like T2; can slvly Y
use to decide which. x| v

EECS-4411 Winter 2017 X-Act Management & CC

16

Dynamic Databases

+ If we relax the assumption that the DB is a
fixed collection of objects, even Strict 2PL will
not assure serializability:

= T1 locks all pages containing sailor records with
rating =1, and finds sailor (say, age = 71).

= Next, T2 inserts a new sailor; rating =1, age = 96.

= T2 also deletes oldest sailor with rating = 2 (and,
say, age = 80), and commits.

= T1 now locks all pages containing sailor records
with rating = 2, and finds (say, age = 63).

< No consistent DB state where T1 is “correct’!
EECS-4411 Winter 2017 X-Act Management & CC 17

The Problem

% T1 implicitly assumes that it has locked the
set of all sailor records with rating = 1.

= Assumption only holds if no sailor records are
added while T1 is executing!

= Need some mechanism to enforce this
assumption.

< Example shows that conflict serializability
guarantees serializability only if the set of
objects is fixed!

EECS-4411 Winter 2017 X-Act Management & CC 18

Data

Index

Index Locking

<+ If there is a dense index on the rating field
using Alternative (2), T1 should lock the

index page containing the data entries with
rating = 1.
= If there are no records with rating =1, T1 must
lock the index page where such a data entry would
be, if it existed!
« If there is no suitable index, T1 must lock all
pages, and lock the file/table to prevent new
pages from being added, to ensure that no

new records with rating =1 are added.
EECS-4411 Winter 2017 X-Act Management & CC 19

Predicate Locking

% Grant lock on all records that satisty some
logical predicate, e.g.

L)

+ Index locking is a special case of predicate
locking for which an index supports efficient
implementation of the predicate lock.

= What is the predicate in the sailor example?

+ In general, predicate locking has a lot of
locking overhead.

EECS-4411 Winter 2017 X-Act Management & CC 20

Locking in B+ Trees

< How can we efficiently lock a particular leat
node?

= Btw, don’ t confuse this with multiple granularity
locking!
% One solution: Ignore the tree structure, just lock
pages while traversing the tree, following 2PL.
<+ This has terrible performance!

= Root node (and many higher level nodes) become
bottlenecks because every tree access begins at the
root.

EECS-4411 Winter 2017 X-Act Management & CC 21

Two Useful Observations

+ Higher levels of the tree only direct searches
for leaf pages.

+ For inserts, a node on a path from root to
modified leaf must be locked (in X mode, of
course), only if a split can propagate up to it
from the modified leaf. (Similar point holds
w.r.t. deletes.)

% We can exploit these observations to design
etficient locking protocols that guarantee
serializability

EECS-4411 Winter 2017 X-Act Management & CC

22

A Simple Tree Locking Algorithm

2 Start at root and go down;
repeatedly, S lock child then unlock parent.

L)

2 Start at root and go down,
obtaining X locks as needed. Once child is
locked, check if it is

= [f child is safe, release all locks on ancestors.

’0

> Node such that changes will not
propagate up beyond this node.

= Inserts: Node is not full.

= Deletes: Node is not half-empty.

EECS-4411 Winter 2017 X-Act Management & CC 23

Do:

1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25%

r J

s ENI - /Irﬂ |

EECS-4411 Winter 2017 X-Act Management & CC 24

A Better Tree Locking Algorithm
(See Bayer-Schkolnick paper)

As before.

= Set locks as if for search, get to leaf, and set
X lock on leatf.

= [f leaf is not , release all locks, and restart
Xact using previous Insert/Delete protocol.

% Gambles that only leat node will be modified;
if not, S locks set on the first pass to leaf are
wasteful. In practice, better than previous alg.

EECS-4411 Winter 2017 X-Act Management & CC 25

r J

Do:
1) Delete 38*
2) Insert 25*
4) Insert 45*
5) Insert 45%,
then 46*

s ENI - /Irﬂ |

EECS-4411 Winter 2017 X-Act Management & CC 26

Fven Better Algorithm

|

As before.

\/
0.0

L)

= Use original Insert/Delete protocol, but set
IX locks instead of X locks at all nodes.

= Once leaf is locked, convert all IX locks to X

locks : i.e., starting from node
nearest to root. (Top-down reduces chances
of deadlock.)

(Contrast use of IX locks here with their use in
multiple-granularity locking.)

EECS-4411 Winter 2017 X-Act Management & CC 27

Hybrid Algorithm

% The likelihood that we really need an X lock
decreases as we move up the tree.

< Hybrid approach
Set S locks

/ > Set SIX locks
:> Set X locks

EECS-4411 Winter 2017 X-Act Management & CC 28

Optimistic CC (Kung-Robinson)

% Locking is a conservative approach in which
conflicts are prevented. Disadvantages:

= Lock management overhead.
» Deadlock detection/resolution.
= Lock contention for heavily used objects.

<+ If conflicts are rare, we might be able to gain
concurrency by not locking, and instead
checking for conflicts before Xacts commit.

EECS-4411 Winter 2017 X-Act Management & CC 29

Kung-Robinson Model

+ Xacts have three phases:

= Xacts read from the database, but
make changes to private copies of objects.
= Check for conflicts.

Make local copies of changes

pubic A

modified & \J U/

objects \[Z new
EECS-4411 Winter 2017 - 1 & CC 30

Validation

< Test conditions that are to ensure
that no conflict occurred.

% Hach Xact is assighed a numeric id.
" Just use a

% Xact ids assigned at end of READ phase, just
before validation begins. (Why then?)

Set of objects read by Xact Ti.
2 Set of objects modified by Ti.

L)

EECS-4411 Winter 2017 X-Act Management & CC 31

Test 1

% For all i and j such that Ti <Tj, check that Ti
completes before Tj begins.

Ti

EECS-4411 Winter 2017 X-Act Management & CC

32

Test 2

% For all i and j such that Ti < Tj, check that:
= Ti completes before Tj begins its Write phase +

= WriteSet(Ti) m ReadSet(1j) is empty.
Ti

R W

R W

1]

Does Tj read dirty data? Does Ti overwrite Tj s writes?
EECS-4411 Winter 2017 X-Act Management & CC 33

Test 3

% For all i and j such that Ti < Tj, check that:
= Ti completes Read phase before Tj does +
= WriteSet(Ti) m ReadSet(1j) is empty +
= WriteSet(Ti) M WriteSet(Tj) is empty.

T1 e
R W
R W

Does Tj read dirty data? Does Ti overwrite Tj s writes?
EECS-4411 Winter 2017 X-Act Management & CC 34

Applying Tests 1 & 2: Serial Validation

< To validate Xact T:

valid = true;
// S = set of Xacts that committed after Begin(T)

valid

valid

else Restart T \

\
EECS-4411 Winter 2017 X-Act Management & cc €d Of critical section

Comments on Serial Validation

% Applies Test 2, with T playing the role of Tj
and each Xact in Ts (in turn) being Ti.
% Assignment of Xact id, validation, and the
Write phase are inside a !
= [.e., Nothing else goes on concurrently.

= [f Write phase is long, major drawback.

% Optimization for Read-only Xacts:

= Don’ t need critical section (because there is no
Write phase).

EECS-4411 Winter 2017 X-Act Management & CC 36

Serial Validation (Contd.)

2 Validate in stages, at
each stage validating T against a subset of the Xacts
that committed after Begin(T).

= Only last stage has to be inside critical section.

‘0

2 Run starving Xact in a critical section (!!)

’0

» To validate Tj, must have
WriteSets for all Ti where Ti <Tjand Ti was active
when Tj began. There may be many such Xacts, and
we may run out of space.

= Tj s validation fails if it requires a missing WriteSet.

= No problem if Xact ids assigned at start of Read phase,
EECS-4411 Winter 2017 X-Act Managtment & CC 37

Overheads in Optimistic CC

% Must record read/write activity in ReadSet and
WriteSet per Xact.

* Must create and destroy these sets as needed.
% Must check for conflicts during validation, and
must make validated writes ““global” .
= (Critical section can reduce concurrency.

= Scheme for making writes global can reduce clustering
of objects.

% Optimistic CC restarts Xacts that fail validation.
= Work done so far is wasted; requires clean-up.

EECS-4411 Winter 2017 X-Act Management & CC 38

“Optimistic” " 2PL

+ If desired, we can do the following:
= Set S locks as usual.
= Make changes to private copies of objects.

= Obtain all X locks at end of Xact, make
writes global, then release all locks.

% In contrast to Optimistic CC as in Kung-
Robinson, this scheme results in Xacts being
blocked, waiting for locks.

= However, no validation phase, no restarts
(modulo deadlocks).

EECS-4411 Winter 2017 X-Act Management & CC 39

TI'imestamp CC

2 Give each object a read-timestamp
(RTS) and a write-timestamp (W'TS), give
each Xact a timestamp (TS) when it begins:

= [f action ai of Xact Ti conflicts with action aj
of Xact Tj, and TS(Ti) < TS(Tj), then ai must
occur before aj. Otherwise, restart
violating Xact.

EECS-4411 Winter 2017 X-Act Management & CC 40

When Xact T wants to read Object O

22 this violates timestamp
order of T w.r.t. writer of O.

= So, abort T and restart it with a new, larger TS. (If
restarted with same TS, T will fail again! Contrast
use of timestamps in 2PL for ddlk prevention.)

L)

L)

* Allow T to read O.
= Reset RTS(O) to max(RTS(O), TS(T))

% Change to RTS(O) on reads must be written to
disk! This and restarts represent overheads.

EECS-4411 Winter 2017 X-Act Management & CC 41

When Xact T wants to Write Object O

2 this violates timestamp order
of T w.r.t. writer of O; abort and restart T.

2 violates timestamp order of
T w.r.t. writer of O.

" We can safely ignore such
outdated writes; need not restart T! (T s write is
effectively followed by another

write, with no intervening reads.) | T1 T2
Allows some serializable but non |R(A)
conflict serializable schedules: W(A)
< allow T to write O. Commit
W(A)
EECS-4411 Winter 2017 X-Act Management & CC Commit 42

Timestamp CC and Recoverability

T1 T2
+ Unfortunately, unrecoverable WiA) R(A)
schedules are allowed: W(B)
% Timestamp CC can be moditied Commit
to allow only recoverable schedules:
" until writer commits (but
update WTS5(O) when the write is allowed.)
. T (where TS(T) > WTS(O)) until

writer of O commits.

% Similar to writers holding X locks until commit,
but still not quite 2PL.

EECS-4411 Winter 2017 X-Act Management & CC 43

Multiversion Timestamp CC

4

L)

2 Let writers make a “new” copy while
readers use an appropriate “old” copy:

MAIN VERSION
SEGMENT 0 POOL

(Current (Older versions that
versions of may be useful for
DB objects) 9 some active readers.)

*

- But may be blocked until writer commits.

EECS-4411 Winter 2017 X-Act Management & CC 44

Multiversion CC (Contd.)

< Each version of an object has its writer’ s TS as
its and the TS of the Xact that most
recently read this version as its

< Versions are chained backward; we can
discard versions that are “too old to be of
interest” .

% Bach Xact is classified as Or
= Writer may write some object; Reader never will.
= Xact declares whether it is a Reader when it begins.

EECS-4411 Winter 2017 X-Act Management & CC 45

WTS timeline old new

Reader Xact e e

+ For each object to be rey

* Finds newest version with
(Starts with current version in the main
segment and chains backward through
earlier versions.)

% Assuming that some version of every object
exists from the beginning of time,

= However, might block until writer of the
appropriate version commits.

EECS-4411 Winter 2017 X-Act Management & CC 46

Y

Whriter Xact

% To read an object, follows reader protocol.
% To write an object:
* Finds newest version V s.t.

. T makes a copy 'V of V,
with a pointer to V, with
(Write is buffered until T
commits; other Xacts can see TS values but
can’ t read version)

old new

reject write. i

-I—D-

EECS-4411 Winter 2017 X-Act Man
RTS

I'ransaction Support in SQL-92

< Each transaction has an access mode, a
diagnostics size, and an isolation level.

Isolation Level Dirty | Unrepeatable |Phantom
Read |Read Problem
Read Uncommitted | Maybe | Maybe Maybe
Read Committed |No Maybe Maybe
Repeatable Reads | No No Maybe
Serializable No No No

EECS-4411 Winter 2017

X-Act Management & CC

48

Summary

% There are several lock-based concurrency
control schemes (Strict 2PL, 2PPL). Conflicts
between transactions can be detected in the
dependency graph

% The lock manager keeps track of the locks
issued. Deadlocks can either be prevented or
detected.

+ Naive locking strategies may have the
phantom problem

EECS-4411 Winter 2017 X-Act Management & CC 49

Summary (Contd.)

% Index locking is common, and affects
performance significantly.

= Needed when accessing records via index.

* Needed for (index
locking /predicate locking).

% Tree-structured indexes:
= Straightforward use of 2PL very inefficient.

= Bayer-Schkolnick illustrates potential for
improvement.

+ In practice, better techniques now known; do
record-level, rather than page-level locking.

EECS-4411 Winter 2017 X-Act Management & CC 50

Summary (Contd.)

Multiple granularity locking reduces the overhead
involved in setting locks for nested collections of objects
(e.g., a file of pages); should not be confused with tree
index locking!

Optimistic CC aims to minimize CC overheads in an
“optimistic’© environment where reads are common
and writes are rare.

Optimistic CC has its own overheads however; most
real systems use locking.

SQL-92 provides different isolation levels that control
the degree of concurrency

EECS-4411 Winter 2017 X-Act Management & CC 51

Summary (Contd.)

% Timestamp CC is another alternative to 2PL; allows
some serializable schedules that 2PL does not (although

converse is also true).

>

L)

L)

» Ensuring recoverability with Timestamp CC requires
ability to block Xacts, which is similar to locking.

% Multiversion Timestamp CC is a variant which ensures
that read-only Xacts are never restarted; they can always
read a suitable older version. Additional overhead of
version maintenance.

EECS-4411 Winter 2017 X-Act Management & CC 52

