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CSE 3401: Intro to AI & LP 
Inference in First-Order Logic 

● Required Readings: R & N 9.1, 9.2, and 9.5 
● Resolution Proofs. 
■ Part I: Convert to clausal form 
■ Part II: Dealing with variables (unification).  
■ Part III: Constructing Resolution Proofs. 
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Computing logical consequences 

● We want procedures for computing logical 
consequences that can be implemented in our 
programs. 

● This would allow us to reason with our knowledge 
■  Represent the knowledge as logical formulas 

■  Apply procedures for generating logical consequences 

● These procedures are called proof procedures.   
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Proof Procedures 

● Interesting, proof procedures work by simply 
manipulating formulas. They do not know or 
care anything about interpretations.  

● Nevertheless they respect the semantics of 
interpretations! 

● We will develop a proof procedure for first-
order logic called resolution. 
■ Resolution is the mechanism used by PROLOG 
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Properties of Proof Procedures 

● Before presenting the details of resolution, we 
want to look at properties we would like to 
have in a (any) proof procedure. 

 
● We write KB ⊢ f to indicate that f can be proved 

from KB (the proof procedure used is implicit).  
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Properties of Proof Procedures 

● Soundness  
■  KB ⊢ f →  KB ⊨ f 
   i.e all conclusions arrived at via the proof procedure are correct: 

they are logical consequences.  
 

● Completeness 
■  KB ⊨ f →  KB ⊢ f 
 i.e. every logical consequence can be generated by the proof 

procedure.  

● Note proof procedures are computable, but they might 
have very high complexity in the worst case. So 
completeness is not necessarily achievable in practice.  
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Resolution  

● Clausal form. 
■ Resolution works with formulas expressed in clausal 

form.  
■ A literal is an atomic formula or the negation of an 

atomic formula. dog(fido), ¬cat(fido)  
■ A clause is a disjunction of literals: 
● ¬owns(fido,fred) ∨ ¬dog(fido) ∨ person(fred) 
● We write  

   (¬owns(fido,fred), ¬dog(fido), person(fred)) 
■ A clausal theory is a conjunction of clauses.  
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Resolution  

● Prolog Programs 
■ Prolog programs are clausal theories.  
■ However, each clause in a Prolog program is Horn.   
■ A horn clause contains at most one positive literal. 
● The horn clause 

         ¬q1 ∨ ¬q2 ∨… ∨ ¬qn ∨ p 
 is equivalent to  
           q1 ∧ q2 ∧… ∧ qn ⇒ p 
  and is written as the following rule in Prolog: 

                p :- q1 , q2 ,… ,qn 
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Resolution Rule for Ground Clauses 

● The resolution proof procedure consists of only 
one simple rule:  
■ From the two clauses 
● (P, Q1, Q2, …, Qk) 
● (¬P, R1, R2, …, Rn) 

■ We infer the new clause 
● (Q1, Q2, …, Qk, R1, R2, …, Rn) 

■ Example: 
● (¬largerThan(clyde,cup), ¬fitsIn(clyde,cup) 
● (fitsIn(clyde,cup))  
⇒  ¬largerThan(clyde,cup) 
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Resolution Proof: Forward chaining 

●  Logical consequences can be generated from 
the resolution rule in two ways: 

1.  Forward Chaining inference. 
●  If we have a sequence of clauses C1, C2, …, Ck 
●  Such that each  Ci is either in KB or is the result of 

a resolution step involving two prior clauses in the 
sequence.  

●  We then have that KB ⊢ Ck. 
   Forward chaining is sound so we also have KB ⊨ Ck  
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Resolution Proof: Refutation proofs 

2.  Refutation proofs. 
●  We determine if KB ⊢ f by showing that a 

contradiction can be generated from KB Λ ¬f.  
●  In this case a contradiction is an empty clause ().  
●  We employ resolution to construct a sequence of 

clauses C1, C2, …, Cm such that 
■  Ci is in KB Λ ¬f, or is the result of resolving two 

previous clauses in the sequence. 
■  Cm = ()  i.e. its the empty clause.  

11 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance 

Resolution Proof: Refutation proofs 

● If we can find such a sequence C1, C2, …, 
Cm=(), we have that 
■ KB ⊢ f. 
■ Furthermore, this procedure is sound so  
● KB ⊨ f 

● And the procedure is also complete so it is 
capable of finding a proof of any f that is a 
logical consequence of KB. I.e. 
● If KB ⊨ f  then  we can generate a refutation from 

KB Λ ¬f 

12 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance 

Resolution Proofs Example 

Want to prove likes(clyde,peanuts)  from: 
1.  (elephant(clyde), giraffe(clyde))  
2.  (¬elephant(clyde), likes(clyde,peanuts)) 
3.  (¬giraffe(clyde), likes(clyde,leaves)) 
4.  ¬likes(clyde,leaves) 
 
Forward Chaining Proof: 
●  3&4 → ¬giraffe(clyde) [5.] 
●  5&1 → elephant(clyde) [6.] 
●  6&2 → likes(clyde,peanuts) [7.] ü 
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Resolution Proofs Example 

1.  (elephant(clyde), giraffe(clyde))  
2.  (¬elephant(clyde), likes(clyde,peanuts)) 
3.  (¬giraffe(clyde), likes(clyde,leaves)) 
4.  ¬likes(clyde,leaves) 
 
Refutation Proof: 
First add negation of query to KB:  
5. ¬likes(clyde,peanuts) 
●  5&2 → ¬elephant(clyde) [6.] 
●  6&1 → giraffe(clyde) [7.] 
●  7&3 →  likes(clyde,leaves) [8.] 
●  8&4 →  ()  ü 

14 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance 

Resolution Proofs 

●  Proofs by refutation have the advantage that they are 
easier to find. 

■  They are more focused to the particular conclusion we are 
trying to reach. 

●  To develop a complete resolution proof procedure for 
First-Order Logic we need : 

1.  A way of converting KB and f (the query) into clausal form. 
[we focus on this in the rest of this lecture] 

2.  A way of doing resolution even when we have variables 
(unification).  [this will be covered in the next lecture] 
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Conversion to Clausal Form 

To convert the KB into Clausal form we perform 
the following  8-step procedure: 

 
1.   Eliminate Implications.  
2.   Move Negations inwards (and simplify ¬¬).  
3.   Standardize Variables. 
4.   Skolemize.  
5.   Convert to Prenix Form.  
6.   Distribute conjunctions over disjunctions.  
7.   Flatten nested conjunctions and disjunctions.  
8.   Convert to Clauses.  
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C-T-C-F: Eliminate implications 

We use this example to show each step: 
   ∀X.p(X) → (  ∀Y.p(Y) → p(f(X,Y))  

                   Λ ¬(∀Y. ¬q(X,Y) Λ p(Y))) 
 
1.  Eliminate implications: A→B  è  ¬A ∨ B 
 
∀X. ¬p(X)  

  ∨ (   ∀Y.¬p(Y) ∨ p(f(X,Y))  
       Λ ¬(∀Y. ¬q(X,Y) Λ p(Y)) ) 
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C-T-C-F: Move ¬ Inwards  

∀X. ¬p(X)  
 ∨ (   ∀Y.¬p(Y) ∨ p(f(X,Y))  
       Λ ¬(∀Y. ¬q(X,Y) Λ p(Y)) ) 

 
2. Move Negations Inwards (and simplify ¬¬) 
 
∀X. ¬p(X)  

 ∨ (   ∀Y.¬p(Y) ∨ p(f(X,Y))  
       Λ ∃Y. q(X,Y) ∨ ¬p(Y) ) 
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C-T-C-F: : ¬ continue… 

Rules for moving negations inwards 
●  ¬(A Λ B) è ¬A ∨ ¬B 
●  ¬(A ∨ B) è ¬A Λ ¬B 
●  ¬∀X. f     è ∃X. ¬f 
●  ¬∃X. f     è ∀X. ¬f 
●  ¬¬A      è  A 
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C-T-C-F: Standardize Variables  

∀X. ¬p(X)  
 ∨ (   ∀Y.¬p(Y) ∨ p(f(X,Y))  
       Λ ∃Y.q(X,Y) ∨ ¬p(Y) ) 

3. Standardize Variables (Rename variables so 
that each quantified variable is unique)  

 
∀X. ¬p(X)  

 ∨ (   ∀Y.(¬p(Y) ∨ p(f(X,Y))  
       Λ ∃Z.q(X,Z) ∨ ¬p(Z) )  
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C-T-C-F: Skolemize  

∀X. ¬p(X)  
 ∨ (   ∀Y.¬p(Y) ∨ p(f(X,Y))  
       Λ ∃Z.q(X,Z) ∨ ¬p(Z) )  

 
4. Skolemize (Remove existential quantifiers by 

introducing new function symbols). 
∀X. ¬p(X)  

 ∨ ( ∀Y.¬p(Y) ∨ p(f(X,Y))  
       Λ q(X,g(X)) ∨ ¬p(g(X)) ) 
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C-T-C-F: Skolemization continue… 
     Consider  ∃Y.elephant(Y) Λ friendly(Y) 
 
● This asserts that there is some individual (binding 

for Y) that is both an elephant and friendly. 

● To remove the existential, we invent a name for this 
individual, say a. This is a new constant symbol not 
equal to any previous constant symbols to obtain: 

                    elephant(a) Λ friendly(a) 
 
● This is saying the same thing, since we do not know 

anything about the new constant a.  
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C-T-C-F: Skolemization continue 

● It is essential that the introduced symbol “a” is 
new. Else we might know something else about 
“a” in KB.  

● If we did know something else about “a” we 
would be asserting more than the existential.  

● In original quantified formula we know nothing 
about the variable “Y”. Just what was being 
asserted by the existential formula.  
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C-T-C-F: Skolemization continue 

       Now consider  ∀X∃Y. loves(X,Y).  
 
● This formula claims that for every X there is some Y 

that X loves (perhaps a different Y for each X). 
 
● Replacing the existential by a new constant won’t 

work 
                         ∀X.loves(X,a). 
  

Because this asserts that there is a particular 
individual “a” loved by every X.  

 
● To properly convert existential quantifiers scoped 

by universal quantifiers we must use functions not 
just constants.  
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C-T-C-F: Skolemization continue 

● We must use a function that mentions every universally 
quantified variable that scopes the existential.  

 
● In this case X scopes Y so we must replace the 

existential Y  by a function of X 
                       ∀X. loves(X,g(X)). 
                  where g is a new function symbol. 

● This formula asserts that for every X there is some 
individual (given by g(X)) that X loves. g(X) can be 
different for each different binding of X.  
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C-T-C-F: Skolemization Examples 

● ∀XYZ ∃W.r(X,Y,Z,W)  è ∀XYZ.r(X,Y,Z,h1(X,Y,Z))  

● ∀XY∃W.r(X,Y,g(W))   è ∀XY.r(X,Y,Z,g(h2(X,Y))) 
 
 
● ∀XY∃W∀Z.r(X,Y,W) Λ q(Z,W) 
  

            è    ∀XYZ.r(X,Y,h3(X,Y)) Λ q(Z,h3(X,Y))  
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C-T-C-F:  Convert to prenix  

∀X. ¬p(X)  
 ∨ ( ∀Y.¬p(Y) ∨ p(f(X,Y))  
       Λ q(X,g(X)) ∨ ¬p(g(X)) ) 

5. Convert to prenix form. (Bring all quantifiers to the 
front—only universals, each with different name). 

 
∀X∀Y. ¬p(X)  

 ∨ (¬p(Y) ∨ p(f(X,Y))  
       Λ q(X,g(X)) ∨ ¬p(g(X)) ) 
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C-T-C-F: Conjunctions over disjunctions 

∀X∀Y. ¬p(X)  
 ∨ (¬p(Y) ∨ p(f(X,Y))  
            Λ q(X,g(X)) ∨ ¬p(g(X)) ) 

6. Conjunctions over disjunctions  
 A ν (B Λ C) è (A ν B) Λ (A ν C) 

 
∀XY.   ¬p(X) ∨ ¬p(Y) ∨ p(f(X,Y)) 
        Λ ¬p(X) ∨ q(X,g(X)) ∨ ¬p(g(X)) 
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C-T-C-F: flatten & convert to clauses 

7. Flatten nested conjunctions and disjunctions. 
(A ν (B ν C)) è (A ν B ν C) 

 
8. Convert to Clauses (remove quantifiers and 

break apart conjunctions). 
   ∀XY.   ¬p(X) ∨ ¬p(Y) ∨ p(f(X,Y)) 
            Λ ¬p(X) ∨ q(X,g(X)) ∨ ¬p(g(X)) 
 

a)  ¬p(X) ∨ ¬p(Y) ∨ p(f(X,Y))  
b)  ¬p(X) ∨ q(X,g(X)) ∨ ¬p(g(X)) 
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Unification  

● Ground clauses are clauses with no 
variables in them. For ground clauses we 
can use syntactic identity to detect when we 
have a P and ¬P pair.  

● What about variables can the clauses 
■  (P(john), Q(fred), R(X)) 
■  (¬P(Y), R(susan), R(Y)) 
Be resolved? 
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Unification.  
● Intuitively, once reduced to clausal form, all 

remaining variables are universally 
quantified. So, implicitly (¬P(Y), R(susan), 
R(Y)) represents clauses like 
■  (¬P(fred), R(susan), R(fred)) 
■  (¬P(john), R(susan), R(john)) 
■ … 
 

● So there is a “specialization” of this clause 
that can be resolved with (P(john), Q(fred), 
R(X) 
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Unification.  

● We want to be able to match conflicting 
literals, even when they have variables. This 
matching process automatically determines 
whether or not there is a “specialization” 
that matches. 

 
● We don’t want to over specialize! 
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Unification.  
● (¬p(X), s(X), q(fred)) 
● (p(Y), r(Y))   
● Possible resolvants 
■  (s(john), q(fred), r(john)) {Y=X, X=john} 
■  (s(sally), q(fred), r(sally)) {Y=X, X=sally} 
■  (s(X), q(fred), r(X))          {Y=X} 

● The last resolvant is “most-general”, the 
other two are specializations of it. 

● We want to keep the most general clause so 
that we can use it future resolution steps. 
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Unification.  

● unification is a mechanism for finding a 
“most general” matching. 

● First we consider substitutions. 
■ A substitution is a finite set of equations of the 

form  
 
(V = t)  
 
where V is a variable and t is a term not 
containing V. (t might contain other variables). 
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Substitutions.  
● We can apply a substitution σ to a formula f 

to obtain a new formula fσ by 
simultaneously replacing every variable 
mentioned in the left hand side of the 
substitution by the right hand side.  

         p(X,g(Y,Z))[X=Y, Y=f(a)] è p(Y,g(f(a),Z)) 
 
● Note that the substitutions are not applied 

sequentially, i.e., the first Y is not 
subsequently replaced by f(a). 
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Substitutions.  
●  We can compose two substitutions. θ and 

σ to obtain a new substition θσ.  
Let θ = {X1=s1, X2=s2, …, Xm=sm} 
      σ = {Y1=t1, Y2=t2, …, Yk=sk} 
 
To compute θσ
1.  S = {X1=s1σ, X2=s2σ, …, Xm=smσ, Y1=t1,  

       Y2=t2,…, Yk=sk}  
 
we apply σ to each RHS of θ and then add 
all of the equations of σ.   
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Substitutions.  

1.  S = {X1=s1σ, X2=s2σ, …, Xm=smσ, Y1=t1,  
       Y2=t2,…, Yk=sk} 

2.  Delete any identities, i.e., equations of the 
form V=V. 

3.  Delete any equation Yi=si where Yi is equal 
to one of the Xj in θ. 

The final set S is the composition θσ. 
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Composition Example.  

          θ = {X=f(Y), Y=Z}, σ = {X=a, Y=b, Z=Y}  
 

θσ 
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Substitutions.  
●  The empty substitution ε = {} is also a 

substitution, and it acts as an identity under 
composition. 

●  More importantly substitutions when 
applied to formulas are associative:  
 
                        (fθ)σ = f(θσ) 

●  Composition is simply a way of converting 
the sequential application of a series of 
substitutions to a single simultaneous 
substitution. 
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Unifiers.  

●  A unifier of two formulas f and g is a 
substitution σ that makes f and g 
syntactically identical.  

●  Not all formulas can be unified—
substitutions only affect variables.  
 
   p(f(X),a)     p(Y,f(w))  
 

●  This pair cannot be unified as there is no 
way of making a = f(w) with a substitution. 
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MGU.  

●  A substitution σ of two formulas f and g is a 
Most General Unifier (MGU) if 

1.   σ is a unifier.  
2.  For every other unifier θ of f and g there 

must exist a third substitution λ such that  
               θ = σλ  

§  This says that every other unifier is “more 
specialized than σ. The MGU of a pair of 
formulas f and g is unique up to renaming.  
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MGU.  
                      p(f(X),Z)    p(Y,a)  

 
1.   σ = {Y = f(a), X=a, Z=a} is a unifier.  
 
     p(f(X),Z)σ =  
     p(Y,a)σ       =�
  �
But it is not an MGU. 

2.   θ = {Y=f(X), Z=a} is an MGU.  
 p(f(X),Z) θ =  

  p(Y,a) θ = 
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MGU.  
                      p(f(X),Z)    p(Y,a) 
3.  σ = θλ, where λ={X=a}  
 

 σ = {Y = f(a), X=a, Z=a}  
 λ ={X=a} 
θλ = 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MGU.  
● The MGU is the “least specialized” way of 

making clauses with universal variables 
match. 

● We can compute MGUs. 
●  Intuitively we line up the two formulas and 

find the first sub-expression where they 
disagree. The pair of subexpressions where 
they first disagree is called the disagreement 
set. 

● The algorithm works by successively fixing 
disagreement sets until the two formulas 
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MGU.  
To find the MGU of two formulas f and g. 
 
1.  k = 0; σ0 = {}; S0 = {f,g} 
2.  If Sk contains an identical pair of formulas stop, and 

return σk as the MGU of f and g.  
3.  Else find the disagreement set Dk={e1,e2} of Sk 
4.  If e1 = V a variable, and e2 = t a term not containing 

V (or vice-versa) then let 
σk+1 = σk {V=t}    (Compose the additional 

          substitution)  
Sk+1 = Sk{V=t}    (Apply the additional substitution)  
k = k+1  
GOTO 2 

5.  Else stop, f and g cannot be unified. 



12 

45 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance 

MGU Example 1.  

                    S_0 = {p(f(a), g(X))  ;   p(Y,Y)} 
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MGU Example 2.  

              S0 = {p(a,X,h(g(Z)))  ;   p(Z,h(Y),h(Y))} 
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MGU Example 3.  

              S0 = {p(X,X)  ;  p(Y,f(Y))} 
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Non-Ground Resolution 

● Resolution of non-ground clauses. From the 
two clauses 
      (L, Q1, Q2, …, Qk)  
      (¬M, R1, R2, …, Rn)  
 
Where there exists σ a MGU for L and M.  
 
We infer the new clause  
 
         (Q1σ, …, Qkσ, R1σ, …, Rnσ) 
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Non-Ground Resolution E.G.  
1.  (p(X), q(g(X))) 
2.  (r(a), q(Z), ¬p(a))  

 
L=p(X); M=p(a)  
σ = {X=a} 

3.  R[1a,2c]{X=a} (q(g(a)), r(a), q(Z)) 
 
The notation is important.  
●  “R” means resolution step.  
●  “1a” means the first (a-th) literal in the first clause i.e. p(X).  
●  “2c” means the third (c-th) literal in the second clause, ¬p(a).  

■  1a and 2c are the “clashing” literals. 
●   {X=a} is the substitution applied to make the clashing literals 

identical. 
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Resolution Proof Example  
“Some patients like all doctors. No patient likes 
any quack. Therefore no doctor is a quack.” 
 
Resolution Proof Step 1.  
Pick symbols to represent these assertions. 
 
p(X): X is a patient 
d(x): X is a doctor  
q(X): X is a quack  
l(X,Y): X likes Y 
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Resolution Proof Example  

Resolution Proof Step 2.  
Convert each assertion to a first-order formula. 
 
1.  Some patients like all doctors.  
 
F1.  
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Resolution Proof Example  

2.  No patient likes any quack 
 
F2.  
 
 
3.  Therefore no doctor is a quack. 
Query.  
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Resolution Proof Example  

Resolution Proof Step 3.  
Convert to Clausal form. 
 
F1.  
 
F2. 
 
Negation of Query.  
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Resolution Proof Example  

Resolution Proof Step 4.  
Resolution Proof from the Clauses. 
1.  p(a) 
2.  (¬d(Y),  l(a,Y)) 
3.  (¬p(Z), ¬q(R), ¬l(Z,R)) 
4.  d(b) 
5.  q(b) 
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Resolution Proof Example  
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Answer Extraction.  
●  The previous example shows how we can answer true-false 

questions. With a bit more effort we can also answer “fill-in-
the-blanks” questions (e.g., what is wrong with the car?). 

●  As in Prolog we use free variables in the query where we want 
the fill in the blanks. We simply need to keep track of the 
binding that these variables received in proving the query.  
■  parent(art, jon) –is art one of jon’s parents? 
■  parent(X, jon)   -who is one of jon’s parents? 
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Answer Extraction.  
● A simple bookkeeping device is to use an 

predicate symbol answer(X,Y,…) to keep 
track of the bindings automatically.  

● To answer the query parent(X,jon), we 
construct the clause  

 (¬ parent(X,jon), answer(X)) 

● Now we perform resolution until we obtain a 
clause consisting of only answer literals 
(previously we stopped at empty clauses). 
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Answer Extraction: Example 1 
1.  father(art, jon) 
2.  father(bob,kim) 
3.  (¬father(Y,Z), parent(Y,Z))  

  i.e. all fathers are parents 
4.  (¬ parent(X,jon), answer(X)) 
          i.e. the query is: who is parent of jon? 
Here is a resolution proof: 
5.  R[4,3b]{Y=X,Z=jon}  

            (¬father(X,jon), answer(X)) 
6.  R[5,1]{X=art} answer(art) 
    so art is parent of jon 
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Answer Extraction: Example 2 
1.  (father(art, jon), father(bob,jon)  //either bob or art is parent of jon 

2.  father(bob,kim) 
3.  (¬father(Y,Z), parent(Y,Z))      //i.e. all fathers are parents 
4.  (¬ parent(X,jon), answer(X))    //i.e. query is parent(X,jon) 

 
Here is a resolution proof: 
5.  R[4,3b]{Y=X,Z=jon}  (¬father(X,jon), answer(X)) 
6.  R[5,1a]{X=art} (father(bob,jon), answer(art)) 
7.  R[6,3b] {Y=bob,Z=jon}                         

  (parent(bob,jon), answer(art)) 
8.  R[7,4] {X=bob} (answer(bob), answer(art)) 
A disjunctive answer: either bob or art is parent of jon. 
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Factoring (optional)  
1. (p(X), p(Y))              // ∀ X.∀ Y. ¬p(X)  è   p(Y)  
2. (¬p(V), ¬p(W))        // ∀ V.∀W.   p(V)  è ¬p(W)  
 
●  These clauses are intuitively contradictory, but following the 

strict rules of resolution only we obtain: 
3. R[1a,2a](X=V) (p(Y), ¬p(W)) 

  Renaming variables: (p(Q), ¬p(Z)) 
4. R[3b,1a](X=Z) (p(Y), p(Q))  
 
No way of generating empty clause! 
Factoring is needed to make resolution complete, without it 

resolution is incomplete! 
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Factoring (optional).  
●  If two or more literals of a clause C have an mgu θ, 

then Cθ with all duplicate literals removed is called 
a factor of C. 

●  C = (p(X), p(f(Y)), ¬q(X))  
θ = {X=f(Y)}  
Cθ = (p(f(Y)), p(f(Y)), ¬q(f(Y))) è (p(f(Y)), ¬q(f(Y)) is a 
factor 

 
Adding a factor of a clause can be a step of proof: 
1.  (p(X), p(Y)) 
2.  (¬p(V), ¬p(W)) 
3.  f[1ab]{X=Y} p(Y) 
4.  f[2ab]{V=W} ¬p(W) 
5.  R[3,4]{Y=W} (). 
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Prolog  

●  Prolog search mechanism (without not and 
cut) is simply an instance of resolution, 
except 

1.  Clauses are Horn (only one positive literal) 
2.  Prolog uses a specific depth first strategy when 

searching for a proof. (Rules are used first 
mentioned first used, literals are resolved away 
left to right). 
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Prolog  
●  Append: 
 
1.  append([], Z, Z) 
2.  append([E1 | R1], Y, [E1 | Rest]) :- 

            append(R1, Y, Rest) 
Note:  
§  The second is actually the clause  

   (append([E1|R1], Y, [E1|Rest]) , ¬append(R1,Y,Rest)) 
§  [ ] is a constant (the empty list) 
§  [X | Y]  is cons(X,Y). 
§  So [a,b,c] is short hand for cons(a,cons(b,cons(c,[]))) 
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Prolog: Example of proof 
●  Try to prove : append([a,b], [c,d], [a,b,c,d]): 
 
1.  append([], Z, Z) 
2.  (append([E1|R1], Y, [E1|Rest]),  

      ¬append(R1,Y,Rest)) 
3.  ¬append([a,b], [c,d], [a,b,c,d]) 

4.  R[3,2a]{E1=a, R1=[b], Y=[c,d], Rest=[b,c,d]}  
 ¬append([b], [c,d], [b,c,d]) 

5.  R[4,2a]{E1=b, R1=[], Y=[c,d], Rest=[c,d]}  
 ¬append([], [c,d], [c,d]) 

6.  R[5,1]{Z=[c,d]} () 
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Review: One Last Example! 

Consider the following English description 
 
● Whoever can read is literate.   
● Dolphins are not literate.   
● Flipper is an intelligent dolphin. 

● Who is intelligent but cannot read. 
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Example: pick symbols & convert to first-order formula 

● Whoever can read is literate.  
∀ X. read(X) → lit(X)  

● Dolphins are not literate.  
∀ X. dolp(X) → ¬ lit(X) 

● Flipper is an intelligent dolphin 
dolp(flipper) ∧ intell(flipper) 

● Who is intelligent but cannot read? 
∃ X. intell(X) ∧ ¬ read(X).  
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Example: convert to clausal form 
●  ∀X. read(X) → lit(X)  

  (¬read(X), lit(X)) 
●  Dolphins are not literate.  
∀X. dolp(X) → ¬ lit(X)  

  (¬dolp(X), ¬lit(X)) 
●  Flipper is an intelligent dolphin.  

  dolp(flipper)  
  intell(flipper) 

●  who are intelligent but cannot read? 
∃ X. intell(X) ∧ ¬read(X).  
è ∀ X. ¬ intell(X) ∨ read(X)  
è   (¬intell(X), read(X), answer(X)) 
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Example: do the resolution proof 
1.  (¬read(X), lit(X)) 
2.  (¬dolp(X), ¬lit(X)) 
3.  dolp(flip) 
4.  intell(flip) 
5.  (¬intell(X), read(X),answer(X)) 

6.  R[5a,4] X=flip.  (read(flip), answer(flip)) 
7.  R[6,1a] X=flip.  (lit(flip), answer(flip)) 
8.  R[7,2b] X=flip. (¬dolp(flip), answer(flip)) 
9.  R[8,3] answer(flip) 
so flip is intelligent but cannot read! 


