
1

1 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

CSE 3401: Intro to AI & LP 
Inference in First-Order Logic

● Required Readings: R & N 9.1, 9.2, and 9.5
● Resolution Proofs.
■ Part I: Convert to clausal form
■ Part II: Dealing with variables (unification).
■ Part III: Constructing Resolution Proofs.

2 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Computing logical consequences

● We want procedures for computing logical
consequences that can be implemented in our
programs.

● This would allow us to reason with our knowledge
■  Represent the knowledge as logical formulas

■  Apply procedures for generating logical consequences

● These procedures are called proof procedures.

3 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Proof Procedures

● Interesting, proof procedures work by simply
manipulating formulas. They do not know or
care anything about interpretations.

● Nevertheless they respect the semantics of
interpretations!

● We will develop a proof procedure for first-
order logic called resolution.
■ Resolution is the mechanism used by PROLOG

4 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Properties of Proof Procedures

● Before presenting the details of resolution, we
want to look at properties we would like to
have in a (any) proof procedure.

● We write KB ⊢ f to indicate that f can be proved

from KB (the proof procedure used is implicit).

2

5 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Properties of Proof Procedures

● Soundness
■  KB ⊢ f → KB ⊨ f
 i.e all conclusions arrived at via the proof procedure are correct:

they are logical consequences.

● Completeness
■  KB ⊨ f → KB ⊢ f
 i.e. every logical consequence can be generated by the proof

procedure.

● Note proof procedures are computable, but they might
have very high complexity in the worst case. So
completeness is not necessarily achievable in practice.
 6 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution

● Clausal form.
■ Resolution works with formulas expressed in clausal

form.
■ A literal is an atomic formula or the negation of an

atomic formula. dog(fido), ¬cat(fido)
■ A clause is a disjunction of literals:
● ¬owns(fido,fred) ∨ ¬dog(fido) ∨ person(fred)
● We write  

 (¬owns(fido,fred), ¬dog(fido), person(fred))
■ A clausal theory is a conjunction of clauses.

7 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution

● Prolog Programs
■ Prolog programs are clausal theories.
■ However, each clause in a Prolog program is Horn.
■ A horn clause contains at most one positive literal.
● The horn clause

 ¬q1 ∨ ¬q2 ∨… ∨ ¬qn ∨ p
 is equivalent to
 q1 ∧ q2 ∧… ∧ qn ⇒ p
 and is written as the following rule in Prolog:

 p :- q1 , q2 ,… ,qn

8 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Rule for Ground Clauses

● The resolution proof procedure consists of only
one simple rule:
■ From the two clauses
● (P, Q1, Q2, …, Qk)
● (¬P, R1, R2, …, Rn)

■ We infer the new clause
● (Q1, Q2, …, Qk, R1, R2, …, Rn)

■ Example:
● (¬largerThan(clyde,cup), ¬fitsIn(clyde,cup)
● (fitsIn(clyde,cup))
⇒ ¬largerThan(clyde,cup)

3

9 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Proof: Forward chaining

●  Logical consequences can be generated from
the resolution rule in two ways:

1.  Forward Chaining inference.
●  If we have a sequence of clauses C1, C2, …, Ck
●  Such that each Ci is either in KB or is the result of

a resolution step involving two prior clauses in the
sequence.

●  We then have that KB ⊢ Ck.
 Forward chaining is sound so we also have KB ⊨ Ck

10 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Proof: Refutation proofs

2.  Refutation proofs.
●  We determine if KB ⊢ f by showing that a

contradiction can be generated from KB Λ ¬f.
●  In this case a contradiction is an empty clause ().
●  We employ resolution to construct a sequence of

clauses C1, C2, …, Cm such that
■  Ci is in KB Λ ¬f, or is the result of resolving two

previous clauses in the sequence.
■  Cm = () i.e. its the empty clause.

11 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Proof: Refutation proofs

● If we can find such a sequence C1, C2, …,
Cm=(), we have that
■ KB ⊢ f.
■ Furthermore, this procedure is sound so
● KB ⊨ f

● And the procedure is also complete so it is
capable of finding a proof of any f that is a
logical consequence of KB. I.e.
● If KB ⊨ f then we can generate a refutation from

KB Λ ¬f

12 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Proofs Example

Want to prove likes(clyde,peanuts) from:
1.  (elephant(clyde), giraffe(clyde))
2.  (¬elephant(clyde), likes(clyde,peanuts))
3.  (¬giraffe(clyde), likes(clyde,leaves))
4.  ¬likes(clyde,leaves)

Forward Chaining Proof:
●  3&4 → ¬giraffe(clyde) [5.]
●  5&1 → elephant(clyde) [6.]
●  6&2 → likes(clyde,peanuts) [7.] ü

4

13 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Proofs Example

1.  (elephant(clyde), giraffe(clyde))
2.  (¬elephant(clyde), likes(clyde,peanuts))
3.  (¬giraffe(clyde), likes(clyde,leaves))
4.  ¬likes(clyde,leaves)

Refutation Proof:
First add negation of query to KB:
5. ¬likes(clyde,peanuts)
●  5&2 → ¬elephant(clyde) [6.]
●  6&1 → giraffe(clyde) [7.]
●  7&3 → likes(clyde,leaves) [8.]
●  8&4 → () ü

14 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Proofs

●  Proofs by refutation have the advantage that they are
easier to find.

■  They are more focused to the particular conclusion we are
trying to reach.

●  To develop a complete resolution proof procedure for
First-Order Logic we need :

1.  A way of converting KB and f (the query) into clausal form.
[we focus on this in the rest of this lecture]

2.  A way of doing resolution even when we have variables
(unification). [this will be covered in the next lecture]

15 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Conversion to Clausal Form

To convert the KB into Clausal form we perform
the following 8-step procedure:

1.   Eliminate Implications.
2.   Move Negations inwards (and simplify ¬¬).
3.   Standardize Variables.
4.   Skolemize.
5.   Convert to Prenix Form.
6.   Distribute conjunctions over disjunctions.
7.   Flatten nested conjunctions and disjunctions.
8.   Convert to Clauses.

16 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: Eliminate implications

We use this example to show each step:
 ∀X.p(X) → (∀Y.p(Y) → p(f(X,Y))  

 Λ ¬(∀Y. ¬q(X,Y) Λ p(Y)))

1.  Eliminate implications: A→B è ¬A ∨ B

∀X. ¬p(X)  

 ∨ (∀Y.¬p(Y) ∨ p(f(X,Y))  
 Λ ¬(∀Y. ¬q(X,Y) Λ p(Y)))

5

17 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: Move ¬ Inwards

∀X. ¬p(X)  
 ∨ (∀Y.¬p(Y) ∨ p(f(X,Y))  
 Λ ¬(∀Y. ¬q(X,Y) Λ p(Y)))

2. Move Negations Inwards (and simplify ¬¬)

∀X. ¬p(X)  

 ∨ (∀Y.¬p(Y) ∨ p(f(X,Y))  
 Λ ∃Y. q(X,Y) ∨ ¬p(Y))

18 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: : ¬ continue…

Rules for moving negations inwards
●  ¬(A Λ B) è ¬A ∨ ¬B
●  ¬(A ∨ B) è ¬A Λ ¬B
●  ¬∀X. f è ∃X. ¬f
●  ¬∃X. f è ∀X. ¬f
●  ¬¬A è A

19 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: Standardize Variables

∀X. ¬p(X)  
 ∨ (∀Y.¬p(Y) ∨ p(f(X,Y))  
 Λ ∃Y.q(X,Y) ∨ ¬p(Y))

3. Standardize Variables (Rename variables so
that each quantified variable is unique)

∀X. ¬p(X)  

 ∨ (∀Y.(¬p(Y) ∨ p(f(X,Y))  
 Λ ∃Z.q(X,Z) ∨ ¬p(Z))

20 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: Skolemize

∀X. ¬p(X)  
 ∨ (∀Y.¬p(Y) ∨ p(f(X,Y))  
 Λ ∃Z.q(X,Z) ∨ ¬p(Z))

4. Skolemize (Remove existential quantifiers by

introducing new function symbols).
∀X. ¬p(X)  

 ∨ (∀Y.¬p(Y) ∨ p(f(X,Y))  
 Λ q(X,g(X)) ∨ ¬p(g(X)))

6

21 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: Skolemization continue…
 Consider ∃Y.elephant(Y) Λ friendly(Y)

● This asserts that there is some individual (binding

for Y) that is both an elephant and friendly.

● To remove the existential, we invent a name for this
individual, say a. This is a new constant symbol not
equal to any previous constant symbols to obtain:

 elephant(a) Λ friendly(a)

● This is saying the same thing, since we do not know

anything about the new constant a.

22 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: Skolemization continue

● It is essential that the introduced symbol “a” is
new. Else we might know something else about
“a” in KB.

● If we did know something else about “a” we
would be asserting more than the existential.

● In original quantified formula we know nothing
about the variable “Y”. Just what was being
asserted by the existential formula.

23 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: Skolemization continue

 Now consider ∀X∃Y. loves(X,Y).

● This formula claims that for every X there is some Y

that X loves (perhaps a different Y for each X).

● Replacing the existential by a new constant won’t

work
 ∀X.loves(X,a).
  

Because this asserts that there is a particular
individual “a” loved by every X.

● To properly convert existential quantifiers scoped

by universal quantifiers we must use functions not
just constants.

24 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: Skolemization continue

● We must use a function that mentions every universally
quantified variable that scopes the existential.

● In this case X scopes Y so we must replace the

existential Y by a function of X
 ∀X. loves(X,g(X)).
 where g is a new function symbol.

● This formula asserts that for every X there is some
individual (given by g(X)) that X loves. g(X) can be
different for each different binding of X.

7

25 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: Skolemization Examples

● ∀XYZ ∃W.r(X,Y,Z,W) è ∀XYZ.r(X,Y,Z,h1(X,Y,Z))

● ∀XY∃W.r(X,Y,g(W)) è ∀XY.r(X,Y,Z,g(h2(X,Y)))

● ∀XY∃W∀Z.r(X,Y,W) Λ q(Z,W)
  

 è ∀XYZ.r(X,Y,h3(X,Y)) Λ q(Z,h3(X,Y))

26 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: Convert to prenix

∀X. ¬p(X)  
 ∨ (∀Y.¬p(Y) ∨ p(f(X,Y))  
 Λ q(X,g(X)) ∨ ¬p(g(X)))

5. Convert to prenix form. (Bring all quantifiers to the
front—only universals, each with different name).

∀X∀Y. ¬p(X)  

 ∨ (¬p(Y) ∨ p(f(X,Y))  
 Λ q(X,g(X)) ∨ ¬p(g(X)))

27 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: Conjunctions over disjunctions

∀X∀Y. ¬p(X)  
 ∨ (¬p(Y) ∨ p(f(X,Y))  
 Λ q(X,g(X)) ∨ ¬p(g(X)))

6. Conjunctions over disjunctions  
 A ν (B Λ C) è (A ν B) Λ (A ν C)

∀XY. ¬p(X) ∨ ¬p(Y) ∨ p(f(X,Y))
 Λ ¬p(X) ∨ q(X,g(X)) ∨ ¬p(g(X))

28 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

C-T-C-F: flatten & convert to clauses

7. Flatten nested conjunctions and disjunctions.
(A ν (B ν C)) è (A ν B ν C)

8. Convert to Clauses (remove quantifiers and

break apart conjunctions).
 ∀XY. ¬p(X) ∨ ¬p(Y) ∨ p(f(X,Y))
 Λ ¬p(X) ∨ q(X,g(X)) ∨ ¬p(g(X))

a)  ¬p(X) ∨ ¬p(Y) ∨ p(f(X,Y))
b)  ¬p(X) ∨ q(X,g(X)) ∨ ¬p(g(X))

8

29 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Unification

● Ground clauses are clauses with no
variables in them. For ground clauses we
can use syntactic identity to detect when we
have a P and ¬P pair.

● What about variables can the clauses
■  (P(john), Q(fred), R(X))
■  (¬P(Y), R(susan), R(Y))
Be resolved?

30 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Unification.
● Intuitively, once reduced to clausal form, all

remaining variables are universally
quantified. So, implicitly (¬P(Y), R(susan),
R(Y)) represents clauses like
■  (¬P(fred), R(susan), R(fred))
■  (¬P(john), R(susan), R(john))
■ …

● So there is a “specialization” of this clause
that can be resolved with (P(john), Q(fred),
R(X)

31 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Unification.

● We want to be able to match conflicting
literals, even when they have variables. This
matching process automatically determines
whether or not there is a “specialization”
that matches.

● We don’t want to over specialize!

32 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Unification.
● (¬p(X), s(X), q(fred))
● (p(Y), r(Y))
● Possible resolvants
■  (s(john), q(fred), r(john)) {Y=X, X=john}
■  (s(sally), q(fred), r(sally)) {Y=X, X=sally}
■  (s(X), q(fred), r(X)) {Y=X}

● The last resolvant is “most-general”, the
other two are specializations of it.

● We want to keep the most general clause so
that we can use it future resolution steps.

9

33 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Unification.

● unification is a mechanism for finding a
“most general” matching.

● First we consider substitutions.
■ A substitution is a finite set of equations of the

form  
 
(V = t)  
 
where V is a variable and t is a term not
containing V. (t might contain other variables).

34 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Substitutions.
● We can apply a substitution σ to a formula f

to obtain a new formula fσ by
simultaneously replacing every variable
mentioned in the left hand side of the
substitution by the right hand side.

 p(X,g(Y,Z))[X=Y, Y=f(a)] è p(Y,g(f(a),Z))

● Note that the substitutions are not applied

sequentially, i.e., the first Y is not
subsequently replaced by f(a).

35 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Substitutions.
●  We can compose two substitutions. θ and

σ to obtain a new substition θσ.
Let θ = {X1=s1, X2=s2, …, Xm=sm}
 σ = {Y1=t1, Y2=t2, …, Yk=sk}

To compute θσ
1.  S = {X1=s1σ, X2=s2σ, …, Xm=smσ, Y1=t1,  

 Y2=t2,…, Yk=sk}  
 
we apply σ to each RHS of θ and then add
all of the equations of σ.

36 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Substitutions.

1.  S = {X1=s1σ, X2=s2σ, …, Xm=smσ, Y1=t1,  
 Y2=t2,…, Yk=sk}

2.  Delete any identities, i.e., equations of the
form V=V.

3.  Delete any equation Yi=si where Yi is equal
to one of the Xj in θ.

The final set S is the composition θσ.

10

37 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Composition Example.

 θ = {X=f(Y), Y=Z}, σ = {X=a, Y=b, Z=Y}  

θσ

38 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Substitutions.
●  The empty substitution ε = {} is also a

substitution, and it acts as an identity under
composition.

●  More importantly substitutions when
applied to formulas are associative:  
 
 (fθ)σ = f(θσ)

●  Composition is simply a way of converting
the sequential application of a series of
substitutions to a single simultaneous
substitution.

39 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Unifiers.

●  A unifier of two formulas f and g is a
substitution σ that makes f and g
syntactically identical.

●  Not all formulas can be unified—
substitutions only affect variables.  
 
 p(f(X),a) p(Y,f(w))  

●  This pair cannot be unified as there is no
way of making a = f(w) with a substitution.

40 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

MGU.

●  A substitution σ of two formulas f and g is a
Most General Unifier (MGU) if

1.  σ is a unifier.
2.  For every other unifier θ of f and g there

must exist a third substitution λ such that  
 θ = σλ

§  This says that every other unifier is “more
specialized than σ. The MGU of a pair of
formulas f and g is unique up to renaming.

11

41 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

MGU.
 p(f(X),Z) p(Y,a)  

1.  σ = {Y = f(a), X=a, Z=a} is a unifier.  
 
 p(f(X),Z)σ =  
 p(Y,a)σ =�
 �
But it is not an MGU.

2.  θ = {Y=f(X), Z=a} is an MGU.  
 p(f(X),Z) θ =

 p(Y,a) θ =

42 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

MGU.
 p(f(X),Z) p(Y,a)
3.  σ = θλ, where λ={X=a}  
 

 σ = {Y = f(a), X=a, Z=a}  
 λ ={X=a}
θλ = 

43 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

MGU.
● The MGU is the “least specialized” way of

making clauses with universal variables
match.

● We can compute MGUs.
●  Intuitively we line up the two formulas and

find the first sub-expression where they
disagree. The pair of subexpressions where
they first disagree is called the disagreement
set.

● The algorithm works by successively fixing
disagreement sets until the two formulas
become syntactically identical. 44 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

MGU.
To find the MGU of two formulas f and g.

1.  k = 0; σ0 = {}; S0 = {f,g}
2.  If Sk contains an identical pair of formulas stop, and

return σk as the MGU of f and g.
3.  Else find the disagreement set Dk={e1,e2} of Sk
4.  If e1 = V a variable, and e2 = t a term not containing

V (or vice-versa) then let 
σk+1 = σk {V=t} (Compose the additional

 substitution)  
Sk+1 = Sk{V=t} (Apply the additional substitution)  
k = k+1  
GOTO 2

5.  Else stop, f and g cannot be unified.

12

45 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

MGU Example 1.

 S_0 = {p(f(a), g(X)) ; p(Y,Y)}

46 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

MGU Example 2.

 S0 = {p(a,X,h(g(Z))) ; p(Z,h(Y),h(Y))}

47 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

MGU Example 3.

 S0 = {p(X,X) ; p(Y,f(Y))}

48 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Non-Ground Resolution

● Resolution of non-ground clauses. From the
two clauses 
 (L, Q1, Q2, …, Qk)  
 (¬M, R1, R2, …, Rn)  
 
Where there exists σ a MGU for L and M.  
 
We infer the new clause  
 
 (Q1σ, …, Qkσ, R1σ, …, Rnσ)

13

49 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Non-Ground Resolution E.G.
1.  (p(X), q(g(X)))
2.  (r(a), q(Z), ¬p(a))  

 
L=p(X); M=p(a)  
σ = {X=a}

3.  R[1a,2c]{X=a} (q(g(a)), r(a), q(Z))

The notation is important.
●  “R” means resolution step.
●  “1a” means the first (a-th) literal in the first clause i.e. p(X).
●  “2c” means the third (c-th) literal in the second clause, ¬p(a).

■  1a and 2c are the “clashing” literals.
●  {X=a} is the substitution applied to make the clashing literals

identical.

50 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Proof Example
“Some patients like all doctors. No patient likes
any quack. Therefore no doctor is a quack.”

Resolution Proof Step 1.  
Pick symbols to represent these assertions.

p(X): X is a patient 
d(x): X is a doctor  
q(X): X is a quack  
l(X,Y): X likes Y

51 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Proof Example

Resolution Proof Step 2.
Convert each assertion to a first-order formula.

1.  Some patients like all doctors.

F1.

52 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Proof Example

2.  No patient likes any quack

F2.

3.  Therefore no doctor is a quack.
Query.

14

53 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Proof Example

Resolution Proof Step 3.
Convert to Clausal form.

F1.

F2.
 
Negation of Query.

54 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Proof Example

Resolution Proof Step 4.
Resolution Proof from the Clauses.
1.  p(a)
2.  (¬d(Y), l(a,Y))
3.  (¬p(Z), ¬q(R), ¬l(Z,R))
4.  d(b)
5.  q(b)

55 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Resolution Proof Example

56 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Answer Extraction.
●  The previous example shows how we can answer true-false

questions. With a bit more effort we can also answer “fill-in-
the-blanks” questions (e.g., what is wrong with the car?).

●  As in Prolog we use free variables in the query where we want
the fill in the blanks. We simply need to keep track of the
binding that these variables received in proving the query.
■  parent(art, jon) –is art one of jon’s parents?
■  parent(X, jon) -who is one of jon’s parents?

15

57 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Answer Extraction.
● A simple bookkeeping device is to use an

predicate symbol answer(X,Y,…) to keep
track of the bindings automatically.

● To answer the query parent(X,jon), we
construct the clause  

 (¬ parent(X,jon), answer(X))

● Now we perform resolution until we obtain a
clause consisting of only answer literals
(previously we stopped at empty clauses).

58 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Answer Extraction: Example 1
1.  father(art, jon)
2.  father(bob,kim)
3.  (¬father(Y,Z), parent(Y,Z))  

 i.e. all fathers are parents
4.  (¬ parent(X,jon), answer(X))
 i.e. the query is: who is parent of jon?
Here is a resolution proof:
5.  R[4,3b]{Y=X,Z=jon}  

 (¬father(X,jon), answer(X))
6.  R[5,1]{X=art} answer(art)
 so art is parent of jon

59 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Answer Extraction: Example 2
1.  (father(art, jon), father(bob,jon) //either bob or art is parent of jon

2.  father(bob,kim)
3.  (¬father(Y,Z), parent(Y,Z)) //i.e. all fathers are parents
4.  (¬ parent(X,jon), answer(X)) //i.e. query is parent(X,jon)

Here is a resolution proof:
5.  R[4,3b]{Y=X,Z=jon} (¬father(X,jon), answer(X))
6.  R[5,1a]{X=art} (father(bob,jon), answer(art))
7.  R[6,3b] {Y=bob,Z=jon}

 (parent(bob,jon), answer(art))
8.  R[7,4] {X=bob} (answer(bob), answer(art))
A disjunctive answer: either bob or art is parent of jon.

60 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Factoring (optional)
1. (p(X), p(Y)) // ∀ X.∀ Y. ¬p(X) è p(Y)
2. (¬p(V), ¬p(W)) // ∀ V.∀W. p(V) è ¬p(W)

●  These clauses are intuitively contradictory, but following the

strict rules of resolution only we obtain:
3. R[1a,2a](X=V) (p(Y), ¬p(W))

 Renaming variables: (p(Q), ¬p(Z))
4. R[3b,1a](X=Z) (p(Y), p(Q))

No way of generating empty clause!
Factoring is needed to make resolution complete, without it

resolution is incomplete!

16

61 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Factoring (optional).
●  If two or more literals of a clause C have an mgu θ,

then Cθ with all duplicate literals removed is called
a factor of C.

●  C = (p(X), p(f(Y)), ¬q(X))  
θ = {X=f(Y)}  
Cθ = (p(f(Y)), p(f(Y)), ¬q(f(Y))) è (p(f(Y)), ¬q(f(Y)) is a
factor

Adding a factor of a clause can be a step of proof:
1.  (p(X), p(Y))
2.  (¬p(V), ¬p(W))
3.  f[1ab]{X=Y} p(Y)
4.  f[2ab]{V=W} ¬p(W)
5.  R[3,4]{Y=W} ().

62 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Prolog

●  Prolog search mechanism (without not and
cut) is simply an instance of resolution,
except

1.  Clauses are Horn (only one positive literal)
2.  Prolog uses a specific depth first strategy when

searching for a proof. (Rules are used first
mentioned first used, literals are resolved away
left to right).

63 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Prolog
●  Append:

1.  append([], Z, Z)
2.  append([E1 | R1], Y, [E1 | Rest]) :- 

 append(R1, Y, Rest)
Note:
§  The second is actually the clause  

 (append([E1|R1], Y, [E1|Rest]) , ¬append(R1,Y,Rest))
§  [] is a constant (the empty list)
§  [X | Y] is cons(X,Y).
§  So [a,b,c] is short hand for cons(a,cons(b,cons(c,[])))

64 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Prolog: Example of proof
●  Try to prove : append([a,b], [c,d], [a,b,c,d]):

1.  append([], Z, Z)
2.  (append([E1|R1], Y, [E1|Rest]),  

 ¬append(R1,Y,Rest))
3.  ¬append([a,b], [c,d], [a,b,c,d])

4.  R[3,2a]{E1=a, R1=[b], Y=[c,d], Rest=[b,c,d]}  
 ¬append([b], [c,d], [b,c,d])

5.  R[4,2a]{E1=b, R1=[], Y=[c,d], Rest=[c,d]}  
 ¬append([], [c,d], [c,d])

6.  R[5,1]{Z=[c,d]} ()

17

65 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Review: One Last Example!

Consider the following English description

● Whoever can read is literate.
● Dolphins are not literate.
● Flipper is an intelligent dolphin.

● Who is intelligent but cannot read.

66 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Example: pick symbols & convert to first-order formula

● Whoever can read is literate.  
∀ X. read(X) → lit(X)

● Dolphins are not literate.  
∀ X. dolp(X) → ¬ lit(X)

● Flipper is an intelligent dolphin 
dolp(flipper) ∧ intell(flipper)

● Who is intelligent but cannot read? 
∃ X. intell(X) ∧ ¬ read(X).

67 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Example: convert to clausal form
●  ∀X. read(X) → lit(X)  

 (¬read(X), lit(X))
●  Dolphins are not literate.  
∀X. dolp(X) → ¬ lit(X)  

 (¬dolp(X), ¬lit(X))
●  Flipper is an intelligent dolphin.  

 dolp(flipper)  
 intell(flipper)

●  who are intelligent but cannot read? 
∃ X. intell(X) ∧ ¬read(X).  
è ∀ X. ¬ intell(X) ∨ read(X)  
è (¬intell(X), read(X), answer(X))

68 EECS3401 W 2017 Fahiem Bacchus & Yves Lesperance

Example: do the resolution proof
1.  (¬read(X), lit(X))
2.  (¬dolp(X), ¬lit(X))
3.  dolp(flip)
4.  intell(flip)
5.  (¬intell(X), read(X),answer(X))

6.  R[5a,4] X=flip. (read(flip), answer(flip))
7.  R[6,1a] X=flip. (lit(flip), answer(flip))
8.  R[7,2b] X=flip. (¬dolp(flip), answer(flip))
9.  R[8,3] answer(flip)
so flip is intelligent but cannot read!

