Packet Switching: queueing delay, loss

queuing and loss:

* If arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
- packets will queue, wait to be transmitted on link
- packets can be dropped (lost) if memory (buffer) fills up

How do loss and delay occur?

packets queue in router buffers

* packet arrival rate to link (temporarily) exceeds output link capacity
* packets queue, wait for turn

Four sources of packet delay

$d_{\text {proc: }}$: nodal processing $\quad d_{\text {queue }}$: queueing delay

- check bit errors
- determine output link
- typically < msec
- time waiting at output link for transmission
- depends on congestion level of router

Four sources of packet delay

$d_{\text {trans }}$: transmission delay: $\quad d_{\text {prop }}$: propagation delay:

- L: packet length (bits)
- \quad : link bandwidth (bps)
- d : length of physical link
- $d_{\text {trans }}=L / R$

very different
* Check out the Java applet for an interactive animation on trans vs. prop delay

Caravan analogy

* cars "propagate" at 100 km/hr
* toll booth takes 12 sec to service car (bit transmission time)
* car~bit; caravan ~ packet
* Q: How long until caravan is lined up before 2nd toll booth?
- time to "push" entire caravan through toll booth onto highway = $12 * 10=120 \mathrm{sec}$
- time for last car to propagate from 1st to 2nd toll both: 100km/ ($100 \mathrm{~km} / \mathrm{hr}$) $=1 \mathrm{hr}$
- A: 62 minutes

Caravan analogy (more)

* suppose cars now " propagate" at $1000 \mathrm{~km} / \mathrm{hr}$
* and suppose toll booth now takes one min to service a car
* Q: Will cars arrive to 2nd booth before all cars serviced at first booth?
- A: Yes! after 7 min, 1st car arrives at second booth; three cars still at 1st booth.

Queueing delay (revisited)

* R: link bandwidth (bps)
* L: packet length (bits)
* a: average packet arrival rate

* $L a / R \sim 0$: avg. queueing delay small
* La/R -> 1: avg. queueing delay large
* La/R > 1: more "work" arriving than can be serviced, average delay infinite!
* Check out the Java applet for an interactive animation on queuing and loss

Queueing Theory Basics

* Each "node' or 'station' or router called a queue
* Each packet called a 'job'
* A queue has a servicing/processing station and a buffer or queue where jobs wait for service
* The behaviour of a queue is determined by the queueing policy (e.g. FIFO) and the service time (e.g. proportional to packet length or fixed)
* The performance (throughput, delay etc) depends on the queue parameters and the arrival process of jobs

Analysis

* Analysis of a single queue is difficult
* Analysis of networks of queues is even more difficult.
* The best-known results are derived with striong assumptions on all parameters.
* The standard naming scheme of queues is of the form $X / Y / k / b$ where $X=$ arrival process, Y = service time process, $k=$ number of service stations, $b=$ length of buffer
* We will only look at $\mathrm{M} / \mathrm{M} / 1 / \infty$ queues (M=markovian)
* For networks of $\mathrm{M} / \mathrm{M} / 1 / \infty$ queues, it is enough to analyze single queues. Network performance can be very easily obtained from individual queue performance.

M/M/1/o queues

* The first M: Poisson arrival process. Probability of $\mathrm{N}(\mathrm{t})$ packets arriving in any interval of time t is
$P(N(t)=k)=(\lambda t)^{k} \exp (-\lambda t) / k!, k=0,1,2, \ldots .$.
* The second M: Exponential interarrival times Probability of job k arriving t units after job k-1 is $P(x=t)=\mu \exp (-\mu t)$ if $t>0$ and 0 otherwise. It follows that $E[x]=1 / \mu$, variance $[x]=1 / \mu^{2}$
$*$ Under these assumptions, utilization $=$ Prob(queue is non-empty) $=\rho$ where $\rho=\lambda / \mu$
* So when λ approaches μ (cannot exceed μ), utilization goes towards 100\%

M/M/1/o queues - contd.

* However, expected number of jobs in the queue is $=\rho /(1-\rho)$ where $\rho=\lambda / \mu$
* So when λ approaches μ the number of jobs in the queue approaches infinity!!
* As a result delay goes up.

* Therefore most systems cannot be driven at capacity.

Little's Law

* One of the very few general laws:

The average number of customers in a (stable) queueing system L is equal to the long-term average effective arrival rate, λ, multiplied by the average time a customer spends in the system, W; or $L=\lambda W$.

Applies to single queues or networks

So average delay seen by a packet (from previous slide $)=\rho /[\lambda(1-\rho)]$

"Real" Internet delays and routes

* what do "real" Internet delay \& loss look like?
* traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i :
- sends three packets that will reach router i on path towards destination
- router i will return packets to sender
- sender times interval between transmission and reply.

"Real" Internet delays, routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

[^0]
Packet loss

* queue (aka buffer) preceding link in buffer has finite capacity
* packet arriving to full queue dropped (aka lost)
* lost packet may be retransmitted by previous node, by source end system, or not at all

Throughput

* throughput: rate (bits/time unit) at which bits transferred between sender/receiver
- instantaneous: rate at given point in time
- average: rate over longer period of time

pipe that can carry fluid at rate
R_{c} bits/sec)

[^0]: * Do some traceroutes from exotic countries at www.traceroute.org

