
01/31/17 EECS 3214 - S.Datta 1

EECS 3214: Computer Networks
Protocols and Applications

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043

Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/3214

These slides are adapted from Jim Kurose’s slides.

01/31/17 EECS 3214 - S.Datta 2

Inserting records into DNS

 Example: just created startup “Network Utopia”
 Register name networkuptopia.com at a registrar (e.g.,

Network Solutions)
 Need to provide registrar with names and IP

addresses of your authoritative name server (primary
and secondary)

 Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

 Put in authoritative server Type A record for
www.networkuptopia.com and Type MX record for
networkutopia.com

 How do people get the IP address of your Web site?

01/31/17 EECS 3214 - S.Datta 3

Attacking DNS

DDoS attacks
 Bombard root servers with traffic

 Not successful to date
 Traffic Filtering
 Local DNS servers cache IPs of TLD servers, allowing root server

bypass
 Bombard TLD servers

 Potentially more dangerous

Redirect attacks
 Man-in-middle

 Intercept queries
 DNS poisoning

 Send bogus relies to DNS server, which caches

Exploit DNS for DDoS
 Send queries with spoofed source address: target IP
 Requires amplification

01/31/17 EECS 3214 - S.Datta 4

P2P file sharing

Example
 Alice runs P2P client

application on her
notebook computer

 Intermittently connects to
Internet; gets new IP
address for each
connection

 Asks for “Hey Jude”
 Application displays other

peers that have copy of
Hey Jude.

 Alice chooses one of the
peers, Bob.

 File is copied from Bob’s
PC to Alice’s notebook:
HTTP

 While Alice downloads,
other users uploading from
Alice.

 Alice’s peer is both a Web
client and a transient Web
server.

All peers are servers = highly
scalable!

01/31/17 EECS 3214 - S.Datta 5

Pure P2P architecture

 no always-on server
 arbitrary end systems

directly communicate
 peers are intermittently

connected and change IP
addresses

examples:
 file distribution

(BitTorrent)
 Streaming (KanKan)
 VoIP (Skype)

01/31/17 EECS 3214 - S.Datta 6

P2P: centralized directory

original “Napster” design

1) when peer connects, it
informs central server:
 IP address
 content

2) Alice queries for “Hey Jude”

3) Alice requests file from Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

01/31/17 EECS 3214 - S.Datta 7

P2P: problems with centralized directory

 Single point of failure
 Performance bottleneck
 Copyright infringement

 file transfer is
decentralized, but
locating content is
highly decentralized

01/31/17 EECS 3214 - S.Datta 8

Query flooding: Gnutella

 fully distributed
 no central server

 public domain protocol
 many Gnutella clients

implementing protocol

overlay network: graph
 edge between peer X and

Y if there’s a TCP
connection

 all active peers and edges
is overlay net

 Edge is not a physical link
 Given peer will typically

be connected with < 10
overlay neighbors

01/31/17 EECS 3214 - S.Datta 9

Gnutella: protocol

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTP

 Query message
sent over existing TCP
connections
 peers forward
Query message
 QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

01/31/17 EECS 3214 - S.Datta 10

Gnutella: Peer joining

1. Joining peer X must find some other peer in Gnutella
network: use list of candidate peers

2. X sequentially attempts to make TCP with peers on list
until connection setup with Y

3. X sends Ping message to Y; Y forwards Ping message.

4. All peers receiving Ping message respond with Pong
message

5. X receives many Pong messages. It can then setup
additional TCP connections

Peer leaving?

01/31/17 EECS 3214 - S.Datta 11

Exploiting heterogeneity: KaZaA

 Each peer is either a group
leader or assigned to a
group leader.
 TCP connection between

peer and its group leader.
 TCP connections between

some pairs of group leaders.

 Group leader tracks the
content in all its children.

ordinary peer

group-leader peer

neighoring relationships
in overlay network

01/31/17 EECS 3214 - S.Datta 12

KaZaA: Querying

 Each file has a hash and a descriptor
 Client sends keyword query to its group leader
 Group leader responds with matches:

 For each match: metadata, hash, IP address

 If group leader forwards query to other group leaders,
they respond with matches

 Client then selects files for downloading
 HTTP requests using hash as identifier sent to peers holding

desired file

01/31/17 EECS 3214 - S.Datta 13

Kazaa tricks

 Limitations on simultaneous uploads
 Request queuing
 Incentive priorities
 Parallel downloading

01/31/17 EECS 3214 - S.Datta 14

P2P services

 File sharing – Napster, Gnutella, Kazaa….
 Communication – Instant messaging, VoIP (Skype)
 Computation seti@home
 DHTs – Chord, CAN, Pastry, Tapestry….
 Applications built on emerging overlays Planetlab
 P2P file systems – Past, Farsite
 Wireless Ad-hoc Networking?

01/31/17 EECS 3214 - S.Datta 15

Overlay graphs

 Edges are TCP connections or pointer to an IP address
 Edges maintained by periodic “are you alive” messages.
 Typically new edge established when a neighbor goes

down
 New nodes BOOTSTRAP
 Structured vs Unstructured

01/31/17 EECS 3214 - S.Datta 16

Structured overlays

 Edges arranged in a preplanned manner.
 DNS is an example of a structured overlay (but not P2P)
 Mostly still in the research stage – so has not made it to

the textbook!

01/31/17 EECS 3214 - S.Datta 17

Challenge: locating content

 Gnutella-type search – expensive, no guarantee, need
many cached copies for technique to work well.

 Directed search – assign particular nodes to hold
particular content (or pointers to it).

 - Problems:

 Distributed

 Handling join/leave

01/31/17 EECS 3214 - S.Datta 18

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from one server to N
peers?
 peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
 bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

01/31/17 EECS 3214 - S.Datta 19

File distribution time: client-server
 server transmission: must

sequentially send (upload)
N file copies:
 time to send one copy: F/us

 time to send N copies:
NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach
 Dc-s > max{NF/us,,F/dmin}

 client: each client must
download file copy
 dmin = min client download

rate
 min client download time:

F/dmin

us

network

di

ui

F

01/31/17 EECS 3214 - S.Datta 20

File distribution time: P2P
 server transmission: must

upload at least one copy
 time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network

di

ui

F

 DP2P > max{F/us,,F/dmin,,NF/(us + ui)}

 client: each client must
download file copy
 min client download time:

F/dmin
 clients: as aggregate must download NF bits

 max upload rate (limiting max download rate) is us
+ ui

… but so does this, as each peer brings service capacity
increases linearly in N …

01/31/17 EECS 3214 - S.Datta 21

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tr
ib

ut
io

n
T

im
e P2P

Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

01/31/17 EECS 3214 - S.Datta 22

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a
file

Alice arrives …

 file divided into 256Kb chunks
 peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

01/31/17 EECS 3214 - S.Datta 23

 peer joining torrent:
 has no chunks, but will

accumulate them over time
from other peers

 registers with tracker to get list
of peers, connects to subset of
peers (“neighbors”)

P2P file distribution: BitTorrent

 while downloading, peer uploads chunks to other peers
 peer may change peers with whom it exchanges chunks
 churn: peers may come and go
 once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

01/31/17 EECS 3214 - S.Datta 24

BitTorrent: requesting, sending file chunks

requesting chunks:
 at any given time, different

peers have different subsets
of file chunks

 periodically, Alice asks each
peer for list of chunks that they
have

 Alice requests missing chunks
from peers, rarest first

sending chunks: tit-for-tat
 Alice sends chunks to those

four peers currently sending
her chunks at highest rate
 other peers are choked by Alice

(do not receive chunks from
her)

 re-evaluate top 4 every10 secs
 every 30 secs: randomly

select another peer, starts
sending chunks
 “ optimistically unchoke” this

peer
 newly chosen peer may join top

4

01/31/17 EECS 3214 - S.Datta 25

BitTorrent: tit-for-tat

(1) Alice “ optimistically unchokes” Bob
(2) Alice becomes one of Bob’ s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’ s top-four providers

higher upload rate: find better
trading partners, get file faster
!

01/31/17 EECS 3214 - S.Datta 26

Distributed Hash Table (DHT)

 Hash table

 DHT paradigm

 Circular DHT and overlay networks

 Peer churn

01/31/17 EECS 3214 - S.Datta 27

Key Value

John Washington 132-54-3570

Diana Louise Jones 761-55-3791

Xiaoming Liu 385-41-0902

Rakesh Gopal 441-89-1956

Linda Cohen 217-66-5609

……. ………

Lisa Kobayashi 177-23-0199

Simple database with(key, value) pairs:
• key: human name; value: social security #

Simple Database

• key: movie title; value: IP address

01/31/17 EECS 3214 - S.Datta 28

Original Key Key Value

John Washington 8962458 132-54-3570

Diana Louise Jones 7800356 761-55-3791

Xiaoming Liu 1567109 385-41-0902

Rakesh Gopal 2360012 441-89-1956

Linda Cohen 5430938 217-66-5609

……. ………

Lisa Kobayashi 9290124 177-23-0199

• More convenient to store and search on
numerical representation of key
• key = hash(original key)

Hash Table

01/31/17 EECS 3214 - S.Datta 29

 Distribute (key, value) pairs over millions of peers
 pairs are evenly distributed over peers

 Any peer can query database with a key
 database returns value for the key
 To resolve query, small number of messages exchanged among

peers

 Each peer only knows about a small number of other peers
 Robust to peers coming and going (churn)

Distributed Hash Table (DHT)

01/31/17 EECS 3214 - S.Datta 30

Assign key-value pairs to peers

 rule: assign key-value pair to the peer that has the
closest ID.

 convention: closest is the immediate successor of the
key.

 e.g., ID space {0,1,2,3,…,63}
 suppose 8 peers: 1,12,13,25,32,40,48,60

 If key = 51, then assigned to peer 60
 If key = 60, then assigned to peer 60
 If key = 61, then assigned to peer 1

01/31/17 EECS 3214 - S.Datta 31

1

12

13

25

32
40

48

60

Circular DHT

• each peer only aware of
immediate successor and
predecessor.

“overlay network”

01/31/17 EECS 3214 - S.Datta 32

1

12

13

25

32
40

48

60

What is the value
associated with key 53 ?

value

O(N) messages

on avgerage to resolve

query, when there

are N peers

Resolving a query

01/31/17 EECS 3214 - S.Datta 33

Circular DHT with shortcuts

• each peer keeps track of IP addresses of predecessor, successor,
short cuts.

• reduced from 6 to 3 messages.
• possible to design shortcuts with O(log N) neighbors, O(log N)

messages in query

1

12

13

25

32
40

48

60

What is the value for
key 53

value

01/31/17 EECS 3214 - S.Datta 34

Peer churn

example: peer 5 abruptly leaves

1

3

4

5

8
10

12

15

handling peer churn:
peers may come and go
(churn)
each peer knows address of
its two successors
each peer periodically pings
its
two successors to check
aliveness
if immediate successor
leaves, choose next successor
as new immediate successor

01/31/17 EECS 3214 - S.Datta 35

Peer churn

example: peer 5 abruptly leaves
peer 4 detects peer 5’s departure; makes 8 its immediate
successor
 4 asks 8 who its immediate successor is; makes 8’s immediate
successor its second successor.

1

3

4

8
10

12

15

handling peer churn:
peers may come and go
(churn)
each peer knows address of
its two successors
each peer periodically pings
its
two successors to check
aliveness
if immediate successor
leaves, choose next successor
as new immediate successor

01/31/17 EECS 3214 - S.Datta 36

Major problems

User issues
 Security
 Viruses

Community/Network issues
 Polluted files
 Flash crowds
 Freeloading

01/31/17 EECS 3214 - S.Datta 37

Thought questions

 Is success due to massive number of servers or simply
because content is free?

 Copyright infringement issues: direct vs indirect.

01/31/17 EECS 3214 - S.Datta 38

Next:

 A very brief description of socket programming

01/31/17 EECS 3214 - S.Datta 39

Socket programming

Socket API
 introduced in BSD4.1

UNIX, 1981
 explicitly created, used,

released by apps
 client/server paradigm
 two types of transport

service via socket API:
 unreliable datagram
 reliable, byte stream-

oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Goal: learn how to build client/server application that
communicate using sockets

01/31/17 EECS 3214 - S.Datta 40

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one process
to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

01/31/17 EECS 3214 - S.Datta 41

Socket programming with TCP

Client must contact server
 server process must first be

running
 server must have created

socket (door) that welcomes
client’s contact

Client contacts server by:
 creating client-local TCP

socket
 specifying IP address, port

number of server process
 When client creates socket:

client TCP establishes
connection to server TCP

 When contacted by client,
server TCP creates new
socket for server process to
communicate with client
 allows server to talk with

multiple clients
 source port numbers used

to distinguish clients (more
in Chap 3)

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

01/31/17 EECS 3214 - S.Datta 42

Stream jargon

 A stream is a sequence of characters that flow into or
out of a process.

 An input stream is attached to some input source for
the process, eg, keyboard or socket.

 An output stream is attached to an output source, eg,
monitor or socket.

01/31/17 EECS 3214 - S.Datta 43

Socket programming with TCP

Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

ou
tT

o
S

e
rv

er

to network from network

in
F
ro

m
S

er
ve

r

in
F
ro

m
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

01/31/17 EECS 3214 - S.Datta 44

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

01/31/17 EECS 3214 - S.Datta 45

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

01/31/17 EECS 3214 - S.Datta 46

Example: Java client (TCP), cont.

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

01/31/17 EECS 3214 - S.Datta 47

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

01/31/17 EECS 3214 - S.Datta 48

Example: Java server (TCP), cont

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);
 }
 }
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

01/31/17 EECS 3214 - S.Datta 49

Chapter 2: Summary

 Application architectures
 client-server
 P2P
 hybrid

 application service
requirements:
 reliability, bandwidth, delay

 Internet transport service
model
 connection-oriented, reliable:

TCP
 unreliable, datagrams: UDP

Our study of network apps now complete!

 specific protocols:
 HTTP
 FTP
 SMTP, POP, IMAP
 DNS

01/31/17 EECS 3214 - S.Datta 50

Chapter 2: Summary

 typical request/reply
message exchange:
 client requests info or

service
 server responds with data,

status code

 message formats:
 headers: fields giving info

about data
 data: info being

communicated

Most importantly: learned about protocols

 control vs. data msgs
 in-band, out-of-band

 centralized vs. decentralized
 stateless vs. stateful
 reliable vs. unreliable msg

transfer
 “complexity at network edge”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

