MATH/EECS 1028: Discrete Math for Engineers, Winter 2017 Tutorial 9 (Week of Mar 17, 2017)

Notes:

1. Topics: Induction, Counting, Pigeonhole principle,
2. Note to the TA: There will be a quiz this week.
3. I have used the notations ${ }^{n} C_{k}$ and $\binom{n}{k}$ interchangeably.

Questions:

1. From a group of 12 people - 7 of which are men and 5 women - in how many ways may choose a committee of 4 with 1 man and 3 women?
2. What is the number of 5 digit numbers that do not have a 9 in their decimal representation?
3. What is the number of 5 digit numbers that have exactly two 9 's in their decimal representation?
4. How many three-digit numbers (100, 101, . . . , 999) have three different digits in strictly increasing order or in strictly decreasing order?
5. How many different functions $f:\{0,1, \ldots, n\} \rightarrow\{0,1, \ldots, n, n+1\}$ are there? How many different one-to-one functions $f:\{0,1, \ldots, n\} \rightarrow\{0,1, \ldots, n, n+1\}$ are there?
6. . Repeat the previous question, but require that $f(x)<f(x+1)$ for all $0 \leq x<n$.
7. How many bit strings of length 8 contain an equal number of 0 s and 1 s ?
8. Let $f_{1}=1, f_{2}=1$, and $f_{n}=f_{n-1}+f_{n-2}$ when $n>1$ (the Fibonacci sequence). Prove using induction that $f_{n}>2 n$ when $n \geq 8$ (note that $f_{8}=21$).
9. There are 8 different courses available, and each student must choose 5 courses to put in his/her plan of studies. What is the minimum number of students such that, no matter what they choose, there will be at least 10 students with the same plan?
