MATH/EECS 1028: DISCRETE MATH FOR ENGINEERS, WINTER 2017 Tutorial 8 (Week of Mar 9, 2017)

<u>Notes:</u>

- 1. Assume \mathbb{R} to denote the real numbers, \mathbb{Z} to denote the set of integers $(\ldots, -2, -1, 0, 1, 2, \ldots)$ and \mathbb{N} to denote the natural numbers $(1, 2, 3, \ldots)$.
- 2. Topics: Pigeonhole principle, Proofs, Induction.
- 3. Note to the TA: There will be no quiz this week.

Questions:

- 1. Let s be a positive integer. Prove that every interval [s, 2s] contains a power of 2.
- 2. Prove using induction that for all $n \in \mathbb{N}$, 3 divides $4^n 1$.
- 3. Prove using induction that for all $n \in \mathbb{N}$, the power set of an *n*-element set has 2^n elements.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{1-x}$. Define $f^2(x) = f(f(x))$, $f^3(x) = f(f(f(x)))$ and so on. Guess the form for $f^n(x)$ and prove your answer correct using induction on n.
- 5. Let k be a positive integer and x be real. Prove using induction that if $x + \frac{1}{x}$ is an integer then $x^k + \frac{1}{x^k}$ is also an integer.
- 6. Prove using mathematical induction that if n non-parallel straight lines on the plane intersect at a common point, they divide the plane into 2n regions.
- 7. Use strong induction to show that every positive integer can be written as a sum of distinct powers of 2, that is, as a subset of the integers $2^0 = 1, 2^1 = 2, 2^2 = 4$ and so on.

Hint: For the inductive step, separately consider the case where k+1 is even and where it is odd. Where it is even, note that $\frac{k+1}{2}$ is an integer.

Note: The question implies that every positive integer can be written in binary.