MATH/EECS 1028: Discrete Math for Engineers
 Winter 2017
 Tutorial 6 (Feb 17 and Feb 27, 2017)

Notes:

1. Topics: Logic, proofs.
2. Note to the TA: Attendance will be taken as usual. No quiz this week.

Questions:

1. Express using logical operators, quantifiers and predicates:"The negation of a contradiction is a tautology".
2. Use rules of inference to show that if $\forall x(P(x) \vee Q(x)), \forall x(\neg Q(x) \vee S(x)), \forall x(R(x) \rightarrow$ $\neg S(x))$ and $\exists x \neg P(x)$ are true, then $\exists x \neg R(x)$ is true.
3. Proof by cases.

Prove that $n, n+7$ cannot both be perfect cubes where n is an integer greater than 1 .
4. Let $p<q$ be two consecutive odd primes. Prove that $p+q$ is a composite number, having at least three, not necessarily distinct, prime factors.
5. A function $f(x)$ is said to be strictly increasing if $f(b)>f(a)$ for all $b>a$. Prove that a strictly increasing function from \mathbb{R} to itself is one-to-one.
6. Suppose A, B, C are sets. Prove or disprove: $(A-B)-C=A-(B-C)$.
7. Prove that there is no positive integer n such that $n^{2}+n^{3}=99$.
8. Prove that there is no positive integer n such that $n^{2}+n^{4}=200$.
9. Prove that $p, p+2, p+4$ cannot all be primes except when $p=3$.

Hint: Consider the different cases for $p \bmod 3$ i.e. the remainder obtained after dividing p by 3 .
10. Prove that if n is a nonnegative integer then $n^{3}-n$ is divisible by 6 .

