Tools for reasoning: Logic

Ch. 1: Introduction to Propositional Logic

- Truth values, truth tables
- Boolean logic: $\vee \wedge \neg$
- Implications: $\rightarrow \leftrightarrow$

Why study propositional logic?

- A formal mathematical "language" for precise reasoning.
- Start with propositions.
- Add other constructs like negation, conjunction, disjunction, implication etc.
- All of these are based on ideas we use daily to reason about things.

Propositions

- Declarative sentence
- Must be either True or False.

Propositions:

- York University is in Toronto
- York University is in downtown Toronto
- All students at York are Computer Sci. majors

Not propositions:

- Do you like this class?
- There are x students in this class.

Propositions - 2

- Truth value: True or False
- Variables: p,q,r,s,...
- Negation:
$\forall \neg$ p ("not p")
- Truth tables

p	$\neg \mathrm{p}$
T	F
F	T

Caveat: negating propositions

$\neg \mathrm{p}$: "it is not the case that p is true"
p: "it rained more than 20 inches in TO" p: "John has many iPads"

Practice: Questions 1-7 page 12.
Q10 (a) p: "the election is decided"

Conjunction, Disjunction

- Conjunction: p $\wedge q$ ["and"]
- Disjunction: $p \vee q$ ["or"]

p	q	$p \wedge q$	$p \vee q$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	F

EECS 1028, Winter 2017

Examples

Q11, page 13
p : It is below freezing
q : It is snowing
(a) It is below freezing and snowing
(b) It is below freezing but not snowing
(d) It is either snowing or below freezing (or both)

Exclusive OR (XOR)

- $p \oplus q-T$ if p and q have different truth values, F otherwise
- Colloquially, we often use OR ambiguously - "an entrée comes with soup or salad" implies XOR, but "students can take MATH XXXX if they have taken MATH 2320 or MATH 1019" usually means the normal OR (so a student who has taken both is still eligible for MATH XXXX).

Conditional

- $p \rightarrow q$ ["if p then q"]
- p: hypothesis, q: conclusion
- E.g.: "If you turn in a homework late, it will not be graded"; "If you get 100\% in this course, you will get an A+".
- TRICKY: Is $p \rightarrow q$ TRUE if p is FALSE? YES!!
- Think of "If you get 100% in this course, you will get an A+" as a promise - is the promise violated if someone gets 50% and does not receive an $A+$?

Conditional-2

- $p \rightarrow q$ ["if p then $q "]$
- Truth table:

p	q	$p \rightarrow q$	$\neg p \vee q$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

Note the truth table of $\neg \mathrm{p} \vee \mathrm{q}$ EECS 1028, Winter 2017

Logical Equivalence

- $p \rightarrow q$ and $\neg p \vee q$ are logically equivalent
- Truth tables are the simplest way to prove such facts.
- We will learn other ways later.

Contrapositive

- Contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- Any conditional and its contrapositive are logically equivalent (have the same truth table) - Check by writing down the truth table.
- E.g. The contrapositive of "If you get 100% in this course, you will get an A+" is "If you do not get an A+ in this course, you did not get 100\%".

E.g.: Proof using contrapositive

Prove: If x^{2} is even, x is even

- Proof 1: $x^{2}=2 a$ for some integer a. Since 2 is prime, 2 must divide x.
- Proof 2: if x is not even, x is odd. Therefore x^{2} is odd. This is the contrapositive of the original assertion.

Converse

- Converse of $p \rightarrow q$ is $q \rightarrow p$
- Not logically equivalent to conditional
- Ex 1: "If you get 100% in this course, you will get an A+" and "If you get an A+ in this course, you scored 100\%" are not equivalent.
- Ex 2: If you won the lottery, you are rich.

Other conditionals

Inverse:

- inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$
- How is this related to the converse?

Biconditional:

- "If and only if"
- True if p,q have same truth values, false otherwise. Q: How is this related to XOR?
- Can also be defined as $(p \rightarrow q) \wedge(q \rightarrow p)$

Example

- Q16(c) $1+1=3$ if and only if monkeys can fly.

Readings and notes

- Read pages 1-12.
- Think about the notion of truth tables.
- Master the rationale behind the definition of conditionals.
- Practice translating English sentences to propositional logic statements.

Next

Ch. 1.2, 1.3: Propositional Logic - contd

- Compound propositions, precedence rules
- Tautologies and logical equivalences
- Read only the first section called "Translating English Sentences" in 1.2.

Compound Propositions

- Example: $p \wedge q \vee r$: Could be interpreted as $(p \wedge q) \vee r$ or $p \wedge(q \vee r)$
- precedence order: $\neg \wedge \vee \rightarrow \leftrightarrow$ (IMP!) (Overruled by brackets)
- We use this order to compute truth values of compound propositions.

Tautology

- A compound proposition that is always TRUE, e.g. $q \vee \neg q$
- Logical equivalence redefined: p,q are logical equivalences if $p \leftrightarrow q$ is a tautology. Symbolically $\mathrm{p} \equiv \mathrm{q}$.
- Intuition: $p \leftrightarrow q$ is true precisely when p, q have the same truth values.

Manipulating Propositions

- Compound propositions can be simplified by using simple rules.
- Read page 25-28.
- Some are obvious, e.g. Identity, Domination, Idempotence, double negation, commutativity, associativity
- Less obvious: Distributive, De Morgan's laws, Absorption

Distributive Laws

$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
Intuition (not a proof!) - For the LHS to be true: p must be true and q or r must be true. This is the same as saying p and q must be true or p and r must be true.
$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
Intuition (less obvious) - For the LHS to be true: p must be true or both q and r must be true. This is the same as saying p or q must be true and p or r must be true.

Proof: use truth tables.

De Morgan’s Laws

$\neg(q \vee r) \equiv \neg q \wedge \neg r$
Intuition - For the LHS to be true: neither q nor r can be true. This is the same as saying q and r must be false.
$\neg(q \wedge r) \equiv \neg q \vee \neg r$
Intuition - For the LHS to be true: $q \wedge r$ must be false. This is the same as saying q or r must be false.

Proof: use truth tables.

Using the laws

- Q : Is $\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$ a tautology?
- Can use truth tables
- Can write a compound proposition and simplify

Inference in Propositional Logic

- in Section 1.6 pages 71-75
- Recall: the reason for studying logic was to formalize derivations and proofs.
- How can we infer facts using logic?
- Simple inference rule (Modus Ponens) : From (a) $p \rightarrow q$ and (b) p is TRUE, we can infer that q is TRUE.

Modus Ponens continued

Example:
(a) if these lecture slides (ppt) are online then you can print them out
(b) these lecture slides are online

Can you print out the slides?

- Similarly, From $p \rightarrow q, q \rightarrow r$ and p is TRUE, we can infer that r is TRUE.

Inference rules - continued

- $((p \rightarrow q) \wedge p) \rightarrow q$ is a TAUTOLOGY.
- Modus Tollens, Hypothetical syllogism and disjunctive syllogism can be seen as alternative forms of Modus Ponens
- Other rules like
"From p is true we can infer $p \vee q$ " are very intuitive

Inference rules - continued

Resolution: From
(a) $p \vee q$ and
(b) $\neg p \vee r$, we can infer that

$$
q \vee r
$$

Exercise: check that
$((p \vee q) \wedge(\neg p \vee r)) \rightarrow(q \vee r)$ is a TAUTOLOGY.
Very useful in computer generated proofs.

Inference rules - continued

- Read rules on page 72.
- Understanding the rules is crucial, memorizing is not.
- You should be able to see that the rules make sense and correspond to our intuition about formal reasoning.

Limitations of Propositional Logic

- What can we NOT express using predicates?
Ex: How do you make a statement about all even integers?

$$
\text { If } x>2 \text { then } x^{2}>4
$$

- A more general language: Predicate logic (Sec 1.4)

Next: Predicate Logic

Ch 1.4
-Predicates and quantifiers
-Rules of Inference

Predicate Logic

- A predicate is a proposition that is a function of one or more variables.
E.g.: $P(x)$: x is an even number. So $P(1)$ is false, $P(2)$ is true,....
- Examples of predicates:
- Domain ASCII characters - IsAlpha(x) : TRUE iff x is an alphabetical character.
- Domain floating point numbers - Is $\operatorname{lnt}(\mathrm{x})$: TRUE iff x is an integer.
- Domain integers: Prime(x) - TRUE if x is prime, FALSE otherwise.

Quantifiers

- describes the values of a variable that make the predicate true. E.g. $\exists x \mathrm{P}(\mathrm{x})$
- Domain or universe: set of values taken by a variable (sometimes implicit)

Two Popular Quantifiers

- Universal: $\forall x P(x)$ - " $P(x)$ for all x in the domain"
- Existential: $\exists x P(x)$ - " $P(x)$ for some x in the domain" or "there exists x such that $P(x)$ is TRUE".
- Either is meaningless if the domain is not known/specified.
- Examples (domain real numbers)

$$
\begin{array}{ll}
- & \forall x\left(x^{2}>=0\right) \\
- & \exists x(x>1) \\
- & (\forall x>1)\left(x^{2}>x\right)-\text { quantifier with restricted } \\
& \text { domain } \quad \text { EECS 1028, Winter } 2017
\end{array}
$$

Using Quantifiers

Domain integers:

- Using implications: The cube of all negative integers is negative.

$$
\forall x(x<0) \rightarrow\left(x^{3}<0\right)
$$

- Expressing sums :

$$
\left.\forall n \sum_{i=1}^{n} i=n(n+1) / 2\right)
$$

Aside: summation notation

Scope of Quantifiers

$\forall \exists$ have higher precedence than operators from Propositional Logic; so $\forall x \mathrm{P}(\mathrm{x}) \vee$ $Q(x)$ is not logically equivalent to $\forall x(P(x)$ $\vee \mathrm{Q}(\mathrm{x})$)

- $\exists x(P(x) \wedge Q(x)) \vee \forall x R(x)$

Say $P(x)$: x is odd, $Q(x)$: x is divisible by $3, R(x):(x=0) \vee(2 x>x)$

- Logical Equivalence: $\mathrm{P} \equiv \mathrm{Q}$ iff they have same truth value no matter which domain is used and no matter which predicates are assigned to predicate variables.

Negation of Quantifiers

- "There is no student who can ..."
- "Not all professors are bad...."
- "There is no Toronto Raptor that can dunk like Vince ..."

$$
\begin{aligned}
& -\neg \forall \mathrm{xP}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \text { why? } \\
& -\neg \exists \mathrm{xP}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

- Careful: The negation of "Every Canadian loves Hockey" is NOT "No Canadian loves Hockey"! Many, many students make this mistake!

Nested Quantifiers

- Allows simultaneous quantification of many variables.
- E.g. - domain integers,
$-\quad \exists x \exists y \exists z\left(x^{2}+y^{2}=z^{2)}\right.$ (Pythagorean triples)
- $\quad \forall \mathrm{n} \exists \mathrm{x} \exists \mathrm{y} \exists \mathrm{z}\left(\mathrm{x}^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}=\mathrm{z}^{\mathrm{n}}\right)($ Fermat's Last Theorem implies this is false)
- Domain real numbers:

$$
\begin{array}{ll}
- & \forall \mathrm{x} \forall \mathrm{y} \exists \mathrm{z}((\mathrm{x}<\mathrm{z}<\mathrm{y}) \vee(\mathrm{y}<\mathrm{z}<\mathrm{x})) \text { Is this } \\
& \text { true? } \\
- & \forall \mathrm{x} \forall \mathrm{y} \exists \mathrm{z}((\mathrm{x}=\mathrm{y}) \vee(\mathrm{x}<\mathrm{z}<\mathrm{y}) \vee(\mathrm{y}<\mathrm{z}<\mathrm{x})) \\
- & \forall \mathrm{x} \forall \mathrm{y} \exists \mathrm{z}((\mathrm{x} \neq \mathrm{y}) \rightarrow(\mathrm{x}<\mathrm{z}<\mathrm{y}) \vee(\mathrm{y}<\mathrm{z}<\mathrm{x})) \\
& \quad \operatorname{EECS} 1028, \text { Winter 2017 } \quad 38
\end{array}
$$

Nested Quantifiers - 2

$\forall x \exists y(x+y=0)$ is true over the integers

- Assume an arbitrary integer x.
- To show that there exists a y that satisfies the requirement of the predicate, choose y $=-x$. Clearly y is an integer, and thus is in the domain.
- So $x+y=x+(-x)=x-x=0$.
- Since we assumed nothing about x (other than it is an integer), the argument holds for any integer x.
- Therefore, the predicate is TRUE.

Nested Quantifiers-3

- Analogy: quantifiers are like loops: An inner quantified variable can depend on the outer quantified variable.
E.g. in $\forall x \exists y(x+y=0)$ we chose $y=-x$, so for different x we need different y to satisfy the statement.
$\forall p \exists j$ Accept (p, j) p,j have different domains does NOT say that there is a j that will accept all p.

Nested Quantifiers - 4

- Caution: In general, order matters! Consider the following propositions over the integer domain:

$$
\begin{aligned}
\forall x \exists y & (x<y) \text { and } \exists y \forall x(x<y) \\
- & \forall x \exists y(x<y): ~ " t h e r e ~ i s ~ n o ~ m a x i m u m ~
\end{aligned} \quad \text { integer" } \quad \text {. }
$$

- $\exists \mathrm{y} \forall \mathrm{x}(\mathrm{x}<\mathrm{y})$: "there is a maximum integer"
- Not the same meaning at all!!!

Negation of Nested Quantifiers

- Use the same rule as before carefully.
- Ex 1: $\neg \exists x \forall y(x+y=0)$
- This is equivalent to $\forall x \neg \forall y(x+y=0)$
- This is equivalent to $\forall x \exists y \neg(x+y=0)$
- This is equivalent to $\forall x \exists y(x+y \neq 0)$
- Ex 2: $\neg \forall \mathrm{x} \exists \mathrm{y}(\mathrm{x}<\mathrm{y})$
- This is equivalent to $\exists x \neg \exists y(x<y)$
- This is equivalent to $\exists x \forall y \neg(x<y)$
- This is equivalent to $\exists x \forall y(x \geq y)$

Exercises

Check that:

- $\quad \forall x \exists y(x+y=0)$ is not true over the positive integers.
- $\exists x \forall y(x+y=0)$ is not true over the integers.
- $\quad \forall x<>0 \exists y(y=1 / x)$ is true over the real numbers.

Readings and notes

- Read 1.4-1.5.
- Practice: Q2,8,16,30 (pg 65-67)
- Next: Rules of inference for quantified statements (1.6).

Inference rules for quantified statements

- Very intuitive, e.g. Universal instantiation If $\forall x P(x)$ is true, we infer that $P(a)$ is true for any given a
- E.g.: Universal Modus Ponens:
$\forall x(P(x) \rightarrow Q(x))$ and $P(a)$ imply $Q(a)$ If x is odd then x^{2} is odd, a is odd. So a^{2} is odd.
- Read rules on page 76
- Again, understanding is required, memorization is not.

Commonly used technique: Universal generalization

Prove: If x is even, $x+2$ is even

- Proof:

Prove: If x^{2} is even, x is even
[Note that the problem is to prove an implication.]

- Proof: if x is not even, x is odd. Therefore x^{2} is odd. This is the contrapositive of the original assertion.

Aside: Inference and Planning

- The steps in an inference are useful for planning an action.
- Example: your professor has assigned reading from an out-of-print book. How do you do it?
- Example 2: you are participating in the television show "Amazing race". How do you play?

Aside 2: Inference and

Automatic Theorem-Proving

- The steps in an inference are useful for proving assertions from axioms and facts.
- Why is it important for computers to prove theorems?
- Proving program-correctness
- Hardware design
- Data mining

Aside 3: Inference and Automatic Theorem-Proving

- Sometimes the steps of an inference (proof) are useful. E.g. on Amazon book recommendations are made.
- You can ask why they recommended a certain book to you (reasoning).

Next

- Introduction to Proofs (Sec 1.7)
- What is a (valid) proof?
-Why are proofs necessary?

Introduction to Proof techniques Why are proofs necessary?

What is a (valid) proof?

What details do you include/skip?
"Obviously", "clearly"...

Assertions

- Axioms
- Proposition, Lemma, Theorem
- Corollary
- Conjecture

Types of Proofs

- Direct proofs (including Proof by cases)
- Proof by contraposition
- Proof by contradiction
- Proof by construction
- Proof by Induction
- Other techniques

Direct Proofs

- The average of any two primes greater than 2 is an integer.
- Every prime number greater than 2 can be written as the difference of two squares, i.e. $a^{2}-b^{2}$.

Proof by cases

If n is an integer, then $\mathrm{n}(\mathrm{n}+1) / 2$ is an integer

- Case 1: n is even.
or $n=2 a$, for some integer a
So $n(n+1) / 2=2 a *(n+1) / 2=a *(n+1)$,
which is an integer.
- Case 2: n is odd.
$n+1$ is even, or $n+1=2 a$, for an integer a
So $n(n+1) / 2=n * 2 a / 2=n * a$,
which is an integer.

Proof by contraposition

If $\sqrt{ }(p q) \neq(p+q) / 2$, then $p \neq q$
Direct proof left as exercise
Contrapositive:
If $p=q$, then $\sqrt{ }(p q)=(p+q) / 2$
Easy:
$\sqrt{ }(p q)=\sqrt{ }(p p)=\sqrt{ }\left(p^{2}\right)=p=(p+p) / 2=(p+q) / 2$.

Proof by Contradiction

$\sqrt{ } 2$ is irrational

- Suppose $\sqrt{ } 2$ is rational. Then $\sqrt{ } 2=p / q$, such that p, q have no common factors. Squaring and transposing,
$p^{2}=2 q^{2}$ (even number)
So, p is even (previous slide)
Or $p=2 x$ for some integer x
So $4 x^{2}=2 q^{2}$ or $q^{2}=2 x^{2}$
So, q is even (previous slide)
So, p,q are both even - they have a common factor of 2. CONTRADICTION.

So $\sqrt{ } 2$ is NOT rational.
Q.E.D.

Proof by Contradiction - 2

In general, start with an assumption that statement A is true. Then, using standard inference procedures infer that A is false. This is the contradiction.

Recall: for any proposition $p, p \wedge \neg p$ must be false

Existence Proofs

There exists integers x, y, z satisfying
$x^{2}+y^{2}=z^{2}$

Proof: $x=3, y=4, z=5$.

Existence Proofs - 2

There exists irrational b, c, such that b^{c} is rational (page 97)
Nonconstructive proof:
Consider $\sqrt{ } 2^{\sqrt{ } 2}$. Two cases are possible:

- Case 1: $\sqrt{ } 2^{\sqrt{2}}$ is rational - DONE $(b=c=\sqrt{ } 2)$.
- Case 2: $\sqrt{ } 2^{\sqrt{2}}$ is irrational - Let $\mathrm{b}=\sqrt{ } 2^{\sqrt{2}}, \mathrm{c}=$ $\sqrt{ } 2$.

$$
\text { Then } \mathrm{b}^{\mathrm{c}}=\left(\sqrt{ } 2^{\sqrt{2}}\right)^{\sqrt[1]{2}=}=(\sqrt{ } 2)^{\sqrt{2} \cdot \sqrt{2}}=(\sqrt{ } 2)^{2}=2
$$

Uniqueness proofs

- E.g. the equation $a x+b=0, a, b$ real, $a \neq 0$ has a unique solution.

The Use of Counterexamples

All prime numbers are odd

Every prime number can be written as the difference of two squares, i.e. $a^{2}-b^{2}$.

Examples

- Show that if n is an odd integer, there is a unique integer k such that n is the sum of $k-2$ and $k+3$.
- Prove that there are no solutions in positive integers x and y to the equation $2 x^{2}+5 y^{2}=14$.
- If x^{3} is irrational then x is irrational
- Prove or disprove - if x, y are irrational, $x+y$ is irrational.

Alternative problem statements

- "show A is true if and only if B is true"
- "show that the statements A, B, C are equivalent"

Exercises

- Q8, 10, 26, 28 on page 91

What can we prove?

- The statement must be true
- We must construct a valid proof

The role of conjectures

- $3 x+1$ conjecture

Game: Start from a given integer n . If n is even, replace n by $n / 2$. If n is odd, replace n with $3 n+1$. Keep doing this until you hit 1.
e.g. $\mathrm{n}=5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$

Q: Does this game terminate for all n ?

Elegance in proofs

Q: Prove that the only pair of positive integers satisfying $a+b=a b$ is $(2,2)$.

- Many different proofs exist. What is the simplest one you can think of?

Mathematical Induction

- Very simple
- Very powerful proof technique
-"Guess" and verify strategy

Basic steps

- Hypothesis: $\mathrm{P}(\mathrm{n})$ is true for all positive integers n
- Base case/basis step (starting value)
- Inductive step

Formally:
$[P(1) \wedge \forall k(P(k) \rightarrow P(k+1))] \rightarrow \forall n P(n)$

Intuition

Iterative modus ponens:
$P(k)$
$P(k) \rightarrow P(k+1)$
$P(k+1)$
Need a starting point (Base case)

Proof is beyond the scope of this course

Example 1

$P(n): 1+2+\ldots+n=n(n+1) / 2$
Follow the steps:

- Base case: P(1).

$$
\text { LHS }=1 . \mathrm{RHS}=1(1+1) / 2=\mathrm{LHS}
$$

- Inductive step:
- Assume $P(n)$ is true.
- Show $P(n+1)$ is true.

Note: $1+2+\ldots+n+(n+1)$

$$
=n(n+1) / 2+(n+1)=
$$

$(n+1)(n+2) / 2$ done
EECS 1028, Winter 2017

Example 2

- A difficult series (suppose we guess the answer)
- $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6$
- Base case: P(1) LHS = 1 = RHS.
- Inductive step:

$$
\begin{aligned}
& 1^{2}+2^{2}+3^{2}+\ldots+n^{2}+(n+1)^{2}=n(n+1) \\
& (2 n+1) / 6+(n+1)^{2}=(n+1)(n+2)(2 n+3) / 6= \\
& \text { RHS. }
\end{aligned}
$$

Proving Inequalities

- $P(n): n<4^{n}$
- Base case: $\mathrm{P}(1)$ holds since $1<4$.
- Inductive step:
- Assume $n<4 n$
- Show that $\mathrm{n}+1<4^{\mathrm{n}+1}$

$$
n+1<4^{n}+1<4^{n}+4^{n}<4.4^{n}=4^{n+1}
$$

More examples

- Sum of odd integers
- n^{3}-n is divisible by 3
- Number of subsets of a finite set

Points to remember

- Base case does not have to be n=1
- Most common mistakes are in not verifying that the base case holds
- Sometimes we need more than $\mathrm{P}(\mathrm{n})$ to prove $P(n+1)$ - in these cases STRONG induction is used
- Usually guessing the solution is done first.

How can you guess a solution?

- Try simple tricks: e.g. for sums with similar terms - n times the average or n times the maximum; for sums with fast increasing/decreasing terms, some multiple of the maximum term.
- Often proving upper and lower bounds separately helps.

Strong Induction

- Equivalent to induction - use whichever is convenient
- Formally:
$[P(1) \wedge \forall k(P(1) \wedge \ldots \wedge P(k) \rightarrow P(k+1))]$ $\rightarrow \forall \mathrm{n} P(\mathrm{n})$
- Often useful for proving facts about algorithms

Examples

- Fundamental Theorem of Arithmetic: every positive integer $n, n>1$, can be expressed as the product of one or more prime numbers.
- every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

Fallacies/caveats

- "Proof" that all Canadians are of the same age!
http://www.math.toronto.edu/mathnet/falseProofs/sameAge.html

