Sequences (Ch 2.4)

- Finite or infinite
- Calculus limits of infinite sequences (proving existence, evaluation...)
- E.g.
 - Arithmetic progression (series)
 - 1, 4, 7, 10, ...
 - Geometric progression (series)3, 6, 12, 24, 48 ...

Similarity with series

- $S = a_1 + a_2 + a_3 + a_4 + \dots$ (n terms)
- Consider the sequence

 $S_1, S_2, S_3, \dots S_n$, where

 $S_i = a_1 + a_2 + \dots + a_i$

In general we would like to evaluate sums of series – useful in algorithm analysis. e.g. what is the total time spent in a nested loop?

Sums of common series

Arithmetic series
e.g. 1 + 2 + ... + N (occurs in the analysis of running time of simple for loops)

general form $\Sigma_i t_i$, $t_i = a + ib$

- Geometric series e.g. 1 + 2 + 2^2 + 2^3 + ... + 2^n general form $\Sigma_i t_i$, t_i = arⁱ
- More general series (not either of the above)

 $1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2$

Sums of common series - 2

• Technique for summing arithmetic series

- Technique for summing geometric series
- More general series more difficult

Caveats

- Need to be very careful with infinite series
- In general, tools from calculus are needed to know whether an infinite series sum exists.
- There are instances where the infinite series sum is much easier to compute and manipulate, e.g. geometric series with r < 1.