Sequences (Ch 2.4)

- Finite or infinite
- Calculus - limits of infinite sequences (proving existence, evaluation...)
- E.g.
- Arithmetic progression (series)

$$
1,4,7,10, \ldots
$$

- Geometric progression (series)

$$
3,6,12,24,48 \ldots
$$

Similarity with series

- $S=a_{1}+a_{2}+a_{3}+a_{4}+\ldots$. (n terms)
- Consider the sequence

$$
\begin{aligned}
& S_{1}, S_{2}, S_{3}, \ldots S_{n} \text {, where } \\
& S_{i}=a_{1}+a_{2}+\ldots+a_{i}
\end{aligned}
$$

In general we would like to evaluate sums of series - useful in algorithm analysis.
e.g. what is the total time spent in a nested loop?

Sums of common series

- Arithmetic series
e.g. $1+2+\ldots+n$ (occurs in the analysis of running time of simple for loops)
general form $\sum_{i} \mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}=\mathrm{a}+\mathrm{ib}$
- Geometric series
e.g. $1+2+2^{2}+2^{3}+\ldots+2^{n}$ general form $\sum_{i} \mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}=a r^{\mathrm{i}}$
- More general series (not either of the above)
$1^{2}+2^{2}+3^{2}+4^{2}+\ldots+n^{2}$

Sums of common series - 2

- Technique for summing arithmetic series
- Technique for summing geometric series
- More general series - more difficult

Caveats

- Need to be very careful with infinite series
- In general, tools from calculus are needed to know whether an infinite series sum exists.
- There are instances where the infinite series sum is much easier to compute and manipulate, e.g. geometric series with $r<1$.

