Representation of sets, functions

- Computer representation of sets
- Computer representation of functions
- Graphs of functions

Special functions

- All domains: identity $\mathfrak{J}(x)$

Note: $f^{\circ} f^{-1}=f{ }^{-1} \circ f=\mathfrak{I}$

- Integers: floor, ceiling, DecimalToBinary, BinaryToDecimal
- Reals: exponential, log

Special functions

- DecimalToBinary, BinaryToDecimal
- E.g. $7=111_{2}, 1001_{2}=9$
- BinaryToDecimal $-\mathrm{n}=1001_{2}$:
- $\mathrm{n}=1^{*} 2^{3}+0 * 2^{2}+0^{*} 2^{1}+1^{*} 2^{0}=9$
- DecimalToBinary $-\mathrm{n}=7$:
- $\mathrm{b}_{1}=\mathrm{n}$ rem $2=1, \mathrm{n}=\mathrm{n} \operatorname{div} 2=3$
- $\mathrm{b}_{2}=\mathrm{n}$ rem $2=1, \mathrm{n}=\mathrm{n} \operatorname{div} 2=1$
- $\mathrm{b}_{3}=\mathrm{n}$ rem $2=1, \mathrm{n}=\mathrm{n}$ div $2=0$.
- STOP

Special functions - contd.

- Changing bases: In general need to go through the decimal representation
- E.g: $101_{7}=$?
- $101_{7}=1^{*} 7^{2}+0^{*} 7^{1}+1^{*} 7^{0}=50$
- Decimal to Base 9:
- $\mathrm{d}_{1}=\mathrm{n}$ rem $9=5, \mathrm{n}=\mathrm{n} \operatorname{div} 9=5$
- $\mathrm{b}_{2}=\mathrm{n}$ rem $9=5, \mathrm{n}=\mathrm{n} \operatorname{div} 9=0$.
- STOP
- So $101_{7}=55_{9}$

Special functions - tricks

- Changing bases that are powers of 2 :
- Can often use shortcuts.
- Binary to Octal:
- 10111/101 $=275_{8}$
- Binary to Hexadecimal:
- 10111101 $=$ BD $_{16}$
- Hexadecimal to Octal: Go through binary, not decimal.

Logarithms

- Appendix 2.
- Inverse function of exponential
- Th 2: log of sum, powers (pg A-8)
- Th 3: Change of bases (pg A-8)

