Subsets

- A \subseteq B: \forall x (x \in A \rightarrow x \in B) Theorem: For any set S, ϕ \subseteq S and S \subseteq S.
- Proper subset: $A \subset B$: $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$
- Power set P(S): set of all subsets of S.
- P(S) includes S, φ.
- Tricky question What is P(φ) ?

$$P(\phi) = \{\phi\}$$

Similarly, $P(\{\phi\}) = \{\phi, \{\phi\}\}$

Set operations

- Union $A \cup B = \{ x \mid (x \in A) \lor (x \in B) \}$
- Intersection A ∩ B = { x | (x ∈ A) ∧ (x ∈ B)}
 Disjoint sets A, B are disjoint iff A ∩ B = φ
- Difference A B = {x | (x ∈ A) ∧ (x ∉ B)}
 Symmetric difference
- Complement A^c or $\bar{A} = \{x \mid x \notin A\} = U A$
- Venn diagrams

Laws of set operations

- Page 130 Remember De Morgan's Laws and distributive laws.
- Proofs can be done with Venn diagrams.

E.g.:
$$(A \cap B)^c = A^c \cup B^c$$

Introduction to functions

A function from A to B is an assignment of exactly one element of B to each element of A.

E.g.:

- Let A = B = integers, f(x) = x+10
- Let A = B = integers, $f(x) = x^2$

Not a function

- A = B = real numbers $f(x) = \sqrt{x}$
- A = B = real numbers, f(x) = 1/x

Terminology

- A = Domain, B = Co-domain
- f: $A \rightarrow B$ (not "implies")
- range(f) = {y| ∃ x ∈ A f(x) = y} ⊆ B
- int floor (float real) { ... }
- $f_1 + f_2, f_1 f_2$
- One-to-one INJECTIVE
- Onto SURJECTIVE
- One-to-one correspondence BIJECTIVE

Proving injection (pg 142)

Property: A function is injective if and only if f(a) ≠ f(b) whenever a≠ b

Proving injection - Show that if f(a) = f(b) then a=b

Example: f(x) = 2x+1, $f(x) = x^3$

Proving surjection (pg 143)

Property: If $f:A \rightarrow B$, for any $b \in B$, there must exist $a \in B$, f(a) = b

Proving surjection - consider an arbitrary $b \in B$. Find a such that f(a) = b.

Example: f(x) = 2x+1, $f(x) = x^3$

Bijective functions (pg 144)

Both injective and surjective

A bijective function is invertible

• Inverse: $f^{-1}(y) = x$ iff f(x) = y

• $f^{-1}(x) \neq 1/f(x)$

Operations with functions

Addition:

Example:
$$f(x) = 2x$$
, $g(x) = x^2 + 1$

• Composition: If f: $A \rightarrow B$, g: $C \rightarrow A$, then f ° g: $C \rightarrow B$, f°g(x) = f(g(x))

Example:
$$f(x) = 2x$$
, $g(x) = x^2 + 1$