Subsets

- $A \subseteq B: ~ \forall x(x \in A \rightarrow x \in B)$

Theorem: For any set $S, \phi \subseteq S$ and $S \subseteq S$.

- Proper subset: $A \subset B: \forall x(x \in A \rightarrow x \in$ B) $\wedge \exists x(x \in B \wedge x \notin A)$
- Power set $P(S)$: set of all subsets of S.
- $P(S)$ includes S, ϕ.
- Tricky question - What is $\mathrm{P}(\phi)$?

$$
\begin{gathered}
P(\phi)=\{\phi\} \\
\text { Similarly, } P(\{\phi\})=\{\phi,\{\phi\}\}
\end{gathered}
$$

EECS 1028, Winter 2017

Set operations

- Union $-A \cup B=\{x \mid(x \in A) \vee(x \in B)\}$
- Intersection - $A \cap B=\{x \mid(x \in A) \wedge(x \in B)\}$ Disjoint sets - A, B are disjoint iff $A \cap B=\phi$
- Difference $-A-B=\{x \mid(x \in A) \wedge(x \notin B)\}$ Symmetric difference
- Complement $-A^{c}$ or $\bar{A}=\{x \mid x \notin A\}=U-A$
- Venn diagrams

Laws of set operations

- Page 130 - Remember De Morgan's Laws and distributive laws.
- Proofs can be done with Venn diagrams.
E.g.: $(A \cap B)^{c}=A^{c} \cup B^{c}$

Introduction to functions

A function from A to B is an assignment of exactly one element of B to each element of A.
E.g.:

- Let $A=B=$ integers, $f(x)=x+10$
- Let $A=B=$ integers, $f(x)=x^{2}$

Not a function

- $A=B=$ real numbers $f(x)=\sqrt{ } x$
- $A=B=$ real numbers, $f(x)=1 / x$

Terminology

- $A=$ Domain, $B=$ Co-domain
- $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ (not "implies")
- range(f) $=\{y \mid \exists x \in A f(x)=y\} \subseteq B$
- int floor (float real) $\{\ldots\}$
- $f_{1}+f_{2}, f_{1} f_{2}$
- One-to-one INJECTIVE
- Onto SURJECTIVE
- One-to-one correspondence BIJECTIVE

Proving injection (pg 142)

Property: A function is injective if and only if $f(a) \neq f(b)$ whenever $a \neq b$

Proving injection - Show that if $f(a)=f(b)$ then $\mathrm{a}=\mathrm{b}$
Example: $f(x)=2 x+1, f(x)=x^{\wedge} 3$

Proving surjection (pg 143)

Property: If $f: A \rightarrow B$, for any $b \in B$, there must exist $a \in B, f(a)=b$

Proving surjection - consider an arbitrary $b \in B$. Find a such that $f(a)=b$.

Example: $f(x)=2 x+1, f(x)=x^{\wedge} 3$

Bijective functions (pg 144)

- Both injective and surjective
- A bijective function is invertible
- Inverse: $f^{-1}(y)=x$ iff $f(x)=y$
- $\mathrm{f}^{-1}(x) \neq 1 / f(x)$

Operations with functions

- Addition:

Example: $f(x)=2 x, g(x)=x^{\wedge} 2+1$

- Composition: If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{C} \rightarrow \mathrm{A}$, then $f^{\circ} g: C \rightarrow B, f^{\circ} g(x)=f(g(x))$

Example: $f(x)=2 x, g(x)=x^{\wedge} 2+1$

EECS 1028, Winter 2017

