Math/EECS 1028M:
 Discrete Mathematics for Engineers

Winter 2017

Suprakash Datta

 datta@cse.yorku.caOffice: CSEB 3043
Phone: 416-736-2100 ext 77875
Course page: http://www.eecs.yorku.ca/course/1028

Administrivia

Lectures: Mon-Wed-Fri 1:30-2:30 pm (CLH G)

Exams: 3 tests, 15\% each*(35\%), final (40\%)

* worst test to be scaled to 5%

Homework and Tutorials(25\%):
Slides: should be available before class
Office hours: Tue-Thu 1-3 pm or by appointment at CSEB 3043.

Kenneth H. Rosen. Discrete Mathematics and Its Applications, 7th Edition. McGraw Hill, 2012.

Course objectives

We will focus on two major goals:

- Basic tools and techniques in discrete mathematics
- Propositional logic
- Set Theory, Functions and Relations
- Simple algorithms
- Induction, recursion
- Sums
- Introductory Graph Theory
- Precise and rigorous mathematical reasoning
- Writing proofs

My expectations

- You will attend classes and tutorials regularly
- Want to solidify your Math foundations
- Ask for help when needed
- Learn about academic honesty (see the class webpage for more details on policies).

To do well you should:

- Study with pen and paper
- Ask for help early
- Practice, practice, practice...
- Follow along in class rather than take notes
- Ask questions in class or outside class
- Keep up with the class
- Read the book, not just the slides
- Be timely -- HW submitted late will not be graded

Mathematical Reasoning

- What is Mathematics?
- Mathematics as a precise language
- Motivation (for EECS)
- Specification (description, modeling)
- Reasoning (Making precise, rigorous claims)
- Procedure
- Axioms
- Inference
- Facts/Theorems

Examples of reasoning about problems

- 0.999999999999999....=1?
- There exists integers a,b,c that satisfy the equation $a^{2}+b^{2}=c^{2}$
- The program that I wrote works correctly for all possible inputs.....
- The program that I wrote never hangs (i.e. always terminates)...

Today: review of basic concepts

- Sets
- Number Systems
- Basic algebra

Sets

- Unordered collection of elements, e.g.,
- Single digit integers
- \quad Nonnegative integers
- faces of a die
- sides of a coin
- \quad students enrolled in 1028M, W 2015.
- Equality of sets
- Note: Connection with data types

Describing sets

- English description
- Set builder notation

Note:
The elements of a set can be sets, pairs of elements, pairs of pairs, triples, ...!!

Cartesian product:
$A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$

Sets - continued

- Cardinality - number of (distinct) elements
- Finite set - cardinality some finite integer n
- Infinite set - a set that is not finite

Special sets

- Universal set
- Empty set ϕ (cardinality = ?)

Sets vs Sets of sets

- $\{1,2\}$ vs $\{\{1\},,\{2\}\}$
- $\}$ vs $\{\}\}=\{\phi\}$

Sets of numbers

- Natural numbers
- Whole numbers
- Integers
- Rational numbers
- Real numbers
- Complex numbers
- Co-ordinates on the plane

Natural numbers, Integers, Reals

- Natural numbers (N): $\{1,2,3, \ldots .$.
- Whole numbers (W): $\{0,1,2,3, \ldots\}$
- Integers (Z): \{...,-2,-1, $0,1,2, \ldots$.

Notation: \mathbf{Z}^{+}: positive integers $=\mathbf{N}$

- Real Numbers (R): ? Notation: $\mathbf{R}^{+!}$positive reals
- Q: How are reals represented on a computer?

Rational and Irrational Numbers

- Rational numbers (\mathbf{Q}): $\{x \mid x=m / n$ for some integers m, n, and $n \neq 0\}$
- Irrational numbers: all real numbers that are not real. Examples: $\pi(\mathrm{Pi}), \mathrm{e}, \sqrt{ } 2$
- Q: how do we know that the above are irrational?

Cartesian Products

- $A x B=\{(x, y) \mid x \in A, y \in B\}$ "Set of ordered pairs"
- $\mathbf{R} \mathbf{x} \mathbf{R}=\{(x, y) \mid x \in \mathbf{R}, y \in \mathbf{R}\}$ "Coordinate plane" or "the real plane"

Basic Algebra

Therorem 1, pg A-7

- $b^{*} b^{y}=b^{x+y}$
- $b^{x} / b^{y}=b^{x-y}$
- $\left(b^{x}\right)^{y}=b^{x y}$
- Solving linear and quadratic equations

