Math/CSE 1028:
 Discrete Mathematics for Engineers

Winter 2017

Suprakash Datta

 datta@cse.yorku.caOffice: CSEB 3043
Phone: 416-736-2100 ext 77875
Course page: http://www.cse.yorku.ca/course/1028

Counting

Many applications. E.g.:

- How many factors does an integer have?
- How many trailing zeroes are there in 150!?
- How many case-sensitive alphanumeric passwords are there of length k?
- How many binary functions with n binary inputs are there?

The product rule

- If 2 independent subtasks can be done in m , n ways (resp.) then the task can be done in mn ways.
- E.g. If I have 2 keyboard players and 3 percussionists, I can choose a keyboard-percussion duo in 6 ways.
- E.g. 2: How many 2 digit numbers are there?
- E.g. 3: No of k character alphanumeric passwords

Counting functions

Binary output:

- One binary input: 2^{2} functions
- One integer input: $2^{\text {maXINT }}$ functions
- n binary inputs: $2^{2^{n}}$ functions

Integer output:

- One integer input: MAXINTMAXINT functions

Binary strings

- Number of binary strings of length n ?
- easy
- Number of subsets of a set of n elements?
Relate to previous question....
Each subset is uniquely determined by a binary indicator string of length $\mathrm{n} . .$. .

Number of factors

- How many factors of 2^{n} are there?
- Wrong argument: each 2 may or may not be chosen....
- Correct argument: we can take $0,1, .$. , n of the 2 's. Therefore $\mathrm{n}+1$ factors (including 1 and 2^{n} itself).

Number of factors (general)

Q: How many factors of m are there?
A: Let $m=2^{a} 3^{b} 5^{c}$....Then the number of factors (including 1 and m itself) is ($a+1$) $(b+1)(c+1) \ldots$
Proof: we can take $0,1, .$. , a of the 2 's, $0,1, \ldots$, b of the 3 's and so on.

Powers of 2

Q: How many factors of 2 does 9 ! have?
A: 7

Q: How many factors of 2 does n ! have?
A: $(\mathrm{n} \operatorname{div} 2)+(n \operatorname{div} 4)+(n \operatorname{div} 8)+\ldots$
(div gives the integer quotient)

Number of trailing zeroes

Q: How many trailing zeroes in 150!?
A: Equal to the number of factors of 10 .
There are many more 2's than 5's so it is enough to count the number of 5's in the factorization. So the answer is
(150 div 5) + (150 div 25) + (150 div 125)

The sum rule

- If a job can be done in one of m ways or (exclusive or) in one of n ways, the total number of ways is $m+n$
- E.g. If you must take 3 credits of Math or 3 credits of Physics (but not both) an there are m Math courses and p Physics courses, there is a total of $\mathrm{m}+\mathrm{p}$ courses to choose from.
- Often used together with the product rule

Counting strings

- What is the number of binary strings of length 4 containing exactly one 1 ?
- What is the number of 4 character DNA sequences containing exactly 1 A?

More complex problems

Q: How many 2 digit numbers are multiples of 11 or 13 ?
A: 9 (multiples of 11) +7 (multiples of 13)

Harder question: How many 3 digit numbers are multiples of 11 or 13 ?

The problem is 143 (and its multiples) are multiples of both!

Inclusion-Exclusion (or the subtraction rule)
 $$
|A \cup B|=|A|+|B|-|A \cap B|
$$

- e.g. How many 3 digit numbers are multiples of 11 or 13 ?
- A: No of 3 digit multiples of $11+$ No of 3 digit multiples of 13 - No of 3 digit multiples of 143.
- In how many ways can you toss two dice, so that the first toss is a 1 OR the last toss is a 6 ?

A common trick

Q1: How many 5 element DNA sequences do not contain a C?
A: 3^{5}
Q2: How many 5 element DNA sequences contain at least one C ?
Hint: Use the previous answer.

Q3: What is the number of length 5 alphanumeric strings with at least one digit?

Permutations

- Part of Combinatorics
- $P(n, r)$: number of ways in which r students (out of a class of n) can be lined up for a picture.
- $P(n, n)=n!$
- $P(n, r)=n!/(n-r)$!

Recall that $0!=1$ by definition.

Combinations

- $C(n, r)$: Number of ways r students can be chosen from a class on n students
- $P(n, r)=C(n, r) P(r, r)$
- $C(n, r)=n!/[r!(n-r)!]$

Examples

- Q22, pg 414: How many permutations of the letters ABCDEFG cointain the string BCD?
- How many binary strings of length n contain exactly k 1's?
- Q 32, pg 414: How many strings of 6 lowercase letters contain the letter a?

Binomial Coefficients

$(x+y)^{n}=\sum_{r=0}^{n} C(n, r) x^{n-r} y^{r}$

- We will not prove it formally
- It follows that $\sum \mathrm{C}(\mathrm{n}, \mathrm{r})=2^{\mathrm{n}}$
- And $\sum(-1)^{n} C(n, r)=0$
- And $\sum \mathrm{C}(\mathrm{n}, \mathrm{r}) 2^{r}=3^{n}$

An important identity

- $C(n, r)+C(n, r-1)=C(n+1, r)$
- Direct proof (done on board)
- Combinatorial proof: Choosing r items from a set of $n+1$ items (details on board)
- Note: Use the above for computing C(n,r) in a program...it uses only additions and often avoids overflow issues

Pascal's triangle

- See http://www.mathsisfun.com/pascals-triangle.html for more facts

$\binom{4}{4}$

03/13/17

