Cardinality revisited

- A set is finite (has finite cardinality) if its cardinality is some (finite) integer n.
- Two sets A,B have the same cardinality iff there is a one-to-one correspondence from A to B
- E.g. alphabet (lower case)
- a b c
- 123

Infinite sets

- Why do we care?
- Cardinality of infinite sets
- Do all infinite sets have the same cardinality?

Countable sets

Defn: Is finite OR has the same cardinality as the positive integers.

Why do we care?

E.g.

- The algorithm works for "any n"
- Induction!

A special countable set

The set of all binary strings

 Therefore the set of all Java programs is countable!

Countable sets – contd.

- Proving this involves (usually) constructing an explicit bijection with positive integers.
- Fact (Will not prove): Any subset of a countable set is countable.

Will prove that

- The rationals are countable!
- The reals are not countable

Countably Infinite Sets

A set S is <u>infinite</u> if there exists a surjective function $F:S \rightarrow N$.

"The set N has no more elements than S."

A set S is <u>countable</u> if there exists a surjective function $F: N \rightarrow S$

"The set S has not more elements than N."

A set S is <u>countably infinite</u> if there exists a bijective function F: $N \rightarrow S$.

"The sets N and S are of equal size."

The integers are countable

Write them as

 Find a bijection between this sequence and 1,2,3,4,.....

Notice the pattern:

$$1 \rightarrow 0$$
 $2 \rightarrow 1$ So f(n) = n/2 if n even $3 \rightarrow -1$ $4 \rightarrow 2$ -(n-1)/2 o.w. $5 \rightarrow -2$ $6 \rightarrow 3$

Other simple bijections

Odd positive integers

$$1 \rightarrow 1$$
 $2 \rightarrow 3$ $3 \rightarrow 5$ $4 \rightarrow 7$

 Union of two countable sets A, B is countable:

```
Say f: N \rightarrow A, g:N \rightarrow B are bijections
New bijection h: N \rightarrow A \cup B
h(n) = f(n/2) if n is even
= g((n-1)/2) if n is odd.
```

The rationals are countable

- Show that Z⁺ x Z⁺ is countable.
- Trivial injection between Q⁺, Z⁺ x Z⁺.
- To go from Q⁺ to Q, use the trick used to construct a bijection from Z to Z⁺.
- Details on the board.

Facts to note

- Note that the ordering of Q is not in increasing order or decreasing order of value.
- In proofs, you CANNOT assume that an ordering has to be in increasing or decreasing order.
- So cannot use ideas like "between any two real numbers x, y, there exists a real number 0.5(x+y)" to prove uncountability.

The reals are not countable

- Wrong proof strategy:
- Suppose it is countable
- Write them down in increasing order
- Prove that there is a real number between any two successive reals.

- WHY is this incorrect?
- (Note that the above "proof" would show that the rationals are not countable!!)

The reals are not countable - 2

- Cantor diagonalization argument (1879)
- VERY powerful, important technique.
- Proof by contradiction.
- Strategy
 - Assume countable
 - look at all numbers in the interval [0,1)
 - list them in ANY order
 - show that there is some number not listed

Uncountable Sets

There are infinite sets that are not countable. Typical examples are R, P(N) and $P(\{0,1\}^*)$

We prove this by a <u>diagonalization argument</u>. In short, if S is countable, then you can make a list $s_1, s_2, ...$ of all elements of S.

Diagonalization shows that given such a list, there will always be an element x of S that does not occur in $s_1, s_2,...$

Uncountability of P (N)

The set P (N) contains all the subsets of $\{1,2,...\}$. Each subset $X \subseteq N$ can be identified by an infinite string of bits $x_1x_2...$ such that $x_i=1$ iff $j \in X$.

There is a bijection between P(N) and $\{0,1\}^N$.

Proof by contradiction: Assume P (N) countable.

Hence there must exist a surjection F from N to the set of infinite bit strings.

"There is a list of all infinite bit strings."

Diagonalization

Try to list all possible infinite bit strings:

0	0	0	0	0	0	• • •
1	1	X	1			• • •
2	1	0		0	0	• • •
3	0	1	0	I	0	• • •
•						•••

Look at the bit string on the diagonal of this table: 0101... The negation of this string ("1010...") does not appear in the table.

No Surjection $N \rightarrow \{0,1\}^N$

Let F be a function N \rightarrow {0,1}^N. F(1),F(2),... are all infinite bit strings.

Define the infinite string $Y=Y_1Y_2...$ by $Y_j = NOT(j-th bit of F(j))$

On the one hand $Y \in \{0,1\}^{\mathbb{N}}$, but on the other hand: for every $j \in \mathbb{N}$ we know that $F(j) \neq Y$ because F(j) and Y differ in the j-th bit.

F cannot be a surjection: {0,1}^N is uncountable.

The set of all functions

....is therefore uncountable!

 So there must exist problems for which there do not exist Java programs (or pseudocode, or algorithms!)

Generalization

- We proved that P ({0,1}*) is uncountably infinite.
- Can be generalized to $P(\Sigma^*)$ for any finite Σ .

R is uncountable

- Similar diagonalization proof. We will prove [0,1) uncountable
- Let F be a function N → R
 F(1),F(2),... are all infinite digit strings
 (padded with zeroes if required).
- Define the infinite string of digits Y=Y₁Y₂... by

$$Y_{j} = F(i)_{i} + 1 \quad if F(i)_{i} < 8$$
7

if F(i)_{i} \ge 8

Q: Where does this proof fail on N?

Other infinities

- We proved 2^N uncountable. We can show that this set has the same cardinality as P (N) and R.
- What if we take P (R)?
- Can we build bigger and bigger infinities this way?
- Cantor: Continuum hypothesis YES!

Notes

- The cardinality of neither the reals nor the integers are finite, yet one set is countable, the other is not.
- Q: Is there a set whose cardinality is "inbetween"?
- Q: Is the cardinality of R the same as that of [0,1)?