Cardinality revisited

- A set is finite (has finite cardinality) if its cardinality is some (finite) integer n.
- Two sets A, B have the same cardinality iff there is a one-to-one correspondence from A to B
- E.g. alphabet (lower case)
- abc....
- $123 \ldots$

Infinite sets

-Why do we care?

- Cardinality of infinite sets
- Do all infinite sets have the same cardinality?

Countable sets

Defn: Is finite OR has the same cardinality as the positive integers.

- Why do we care?
E.g.
- The algorithm works for "any n"
- Induction!

A special countable set

- The set of all binary strings
- Therefore the set of all Java programs is countable!

Countable sets - contd.

- Proving this involves (usually) constructing an explicit bijection with positive integers.
- Fact (Will not prove): Any subset of a countable set is countable.

Will prove that

- The rationals are countable!
- The reals are not countable

Countably Infinite Sets

A set S is infinite if there exists a surjective function $\mathrm{F}: \mathrm{S} \rightarrow \mathrm{N}$.
"The set N has no more elements than S."
A set S is countable if there exists a surjective function $\mathrm{F}: \mathrm{N} \rightarrow \mathrm{S}$
"The set S has not more elements than N."

A set S is countably infinite if there exists a bijective function $\mathrm{F}: \mathrm{N} \rightarrow \mathrm{S}$.
"The sets N and S are of equal size."

The integers are countable

- Write them as

$$
0,1,-1,2,-2,3,-3,4,-4, \ldots \ldots
$$

- Find a bijection between this sequence and $1,2,3,4, \ldots \ldots$
Notice the pattern:
$1 \rightarrow 0 \quad 2 \rightarrow 1 \quad$ So $f(n)=n / 2$ if n even
$3 \rightarrow-1 \quad 4 \rightarrow 2$
-(n-1)/2 ow.
$5 \rightarrow-2 \quad 6 \rightarrow 3$

Other simple bijections

- Odd positive integers
$1 \rightarrow 1 \quad 2 \rightarrow 3 \quad 3 \rightarrow 5 \quad 4 \rightarrow 7 \ldots$
- Union of two countable sets A, B is countable:
Say f: $N \rightarrow A, g: N \rightarrow B$ are bijections
New bijection h: $N \rightarrow A \cup B$
$h(n)=f(n / 2)$ if n is even
$=g((n-1) / 2)$ if n is odd.

The rationals are countable

- Show that $Z^{+} \times Z^{+}$is countable.
- Trivial injection between $Q^{+}, Z^{+} \times Z^{+}$.
- To go from Q^{+}to Q, use the trick used to construct a bijection from Z to Z^{+}.
- Details on the board.

Facts to note

- Note that the ordering of Q is not in increasing order or decreasing order of value.
- In proofs, you CANNOT assume that an ordering has to be in increasing or decreasing order.
- So cannot use ideas like "between any two real numbers x, y, there exists a real number $0.5(x+y)$ " to prove uncountability.

The reals are not countable

- Wrong proof strategy:
- Suppose it is countable
- Write them down in increasing order
- Prove that there is a real number between any two successive reals.
- WHY is this incorrect?
(Note that the above "proof" would show that the rationals are not countable!!)

The reals are not countable - 2

- Cantor diagonalization argument (1879)
- VERY powerful, important technique.
- Proof by contradiction.
- Strategy
- Assume countable
- look at all numbers in the interval $[0,1$)
- list them in ANY order
- show that there is some number not listed

Uncountable Sets

There are infinite sets that are not countable.
Typical examples are $R, P(N)$ and $P\left(\{0,1\}^{*}\right)$
We prove this by a diagonalization argument. In short, if S is countable, then you can make a
list s_{1}, s_{2}, \ldots of all elements of S.

Diagonalization shows that given such a list, there will always be an element x of S that does not occur in $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots$

Uncountability of \mathbf{P} (N)

The set $P(N)$ contains all the subsets of $\{1,2, \ldots\}$. Each subset $\mathrm{X} \subseteq \mathrm{N}$ can be identified by an infinite string of bits $x_{1} x_{2} \ldots$ such that $x_{j}=1$ iff $j \in X$.

There is a bijection between $P(N)$ and $\{0,1\}^{N}$.
Proof by contradiction: Assume $P(N)$ countable.
Hence there must exist a surjection F from N to the set of infinite bit strings.
"There is a list of all infinite bit strings."

Diagonalization

Try to list all possible infinite bit strings:

Look at the bit string on the diagonal of this table: 0101... The negation of this string ("1010...") does not appear in the table.

No Surjection $N \rightarrow\{0,1\}^{N}$

Let F be a function $N \rightarrow\{0,1\}^{N}$.
$F(1), F(2), \ldots$ are all infinite bit strings.
Define the infinite string $Y=Y_{1} Y_{2} \ldots$ by $Y_{j}=$ NOT(j-th bit of $\left.F(j)\right)$

On the one hand $Y \in\{0,1\}^{\mathrm{N}}$, but on the other hand: for every $j \in N$ we know that $F(j) \neq Y$ because $F(j)$ and Y differ in the j-th bit.

F cannot be a surjection: $\{0,1\}^{\mathrm{N}}$ is uncountable.

The set of all functions

-is therefore uncountable!
- So there must exist problems for which there do not exist Java programs (or pseudocode, or algorithms!)

Generalization

- We proved that $P\left(\{0,1\}^{*}\right)$ is uncountably infinite.
- Can be generalized to $P\left(\Sigma^{*}\right)$ for any finite Σ.

R is uncountable

- Similar diagonalization proof. We will prove $[0,1$) uncountable
- Let F be a function $N \rightarrow R$ $F(1), F(2), \ldots$ are all infinite digit strings (padded with zeroes if required).
- Define the infinite string of digits $Y=Y_{1} Y_{2} \ldots$ by

$$
\begin{array}{cl}
Y_{j}=F(i)_{i}+1 & \text { if } F(i)_{i}<8 \\
7 & \text { if } F(i)_{i} \geq 8
\end{array}
$$

Q: Where does this proof fail on N?

Other infinities

- We proved 2^{N} uncountable. We can show that this set has the same cardinality as $P(N)$ and R.
- What if we take $P(R)$?
- Can we build bigger and bigger infinities this way?
- Cantor: Continuum hypothesis - YES!

Notes

- The cardinality of neither the reals nor the integers are finite, yet one set is countable, the other is not.
- Q: Is there a set whose cardinality is "inbetween"?
- Q : Is the cardinality of R the same as that of $[0,1)$?

