
Spetsakis Computer Vision

3. Regularization

Since we got a nice taste of what regularization is, let’s see a generic problem of the
type that is usually handled with regularization. The simplest such problem is smooth
interpolation in one dimension. This is an important problem, not because it is such a
good way to interpolate, but because it can be generalized in many different ways and
form the basis of many very applied algorithms like “snakes”, “membranes”, and “thin
plates”. Despite their silly names these are very important and very applied techniques (I
do not want to scare you from going to the doctor) in medical imaging and other areas.

The problem is best explained by Fig. 3.1. We want to find a line that goes “near”
near these points and is “smooth”. Both the words “near” and “smooth” admit different
interpretations but we aim for the simplest. For the “near” we have only one choice if we
want to keep things simple and this is least squares. For the “smooth” we have more
choices but all of them involving a form of least squares. We can minimiza the square of
the first derivative, the square of the second or a weighted sum of the two. We can go to
the third derivative or beyond but this is not very common. Finally we have to decide how
much emphasis we put on the nearness or the smoothness which is controlled by the
parameterλ in the expression
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Figure 3.1: The question is how to find a line that passes “near” all these points and is “smooth”.
The word “smooth” can have different meanings as can the word “near”.
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S = S ph + λ Ssm

whereS is the expression we want to minimize,S ph represents the physical constraint,
that relates to the nearness andSsm represents the smoothness.

Let us now start with the physical contraint. We hav eto determine a functionf (x)
that passes near the points [xi, yi], or in more mathematical terms

f (pi) − qi

is small for alli. Since we know and love least squares, that’s what we use:

(3.1)S ph =
M−1

i=0
Σ ( f (pi) − qi)

2.

3.1. Representation of an Arbitrary Function.

The next problem is how we represent functionf . The choices are many. We could,
for example approximatef with a polynomial. But we would need a very high degree
poynomial for a function that tries to pass close to many points and such polynomials are
difficult to handle. We could also representf as a sum of sines and cosines, but this will
lead to complicated equations that involve the inversion of large matrices with very feww
zeros. The best method is to representf by a set of regular points that it passes through
and interpolate between these points with low degree polynomials. This leads to simple
equations that involve the inversion of matrices that are mostly zeros. To make our life
ev en easier we will interpolate between successive points with straight lines. So we define
f as

f (x) =











0 ≤ x < 1 :

1 ≤ x < 2 :

2 ≤ x ≤ 3 :
. . .

k ≤ x ≤ k + 1 :
. . .

N − 1 ≤ x < N :

(1 − x)y0 + x y1

(2 − x)y1 + (x − 1)y1

(3 − x)y2 + (x − 2)y1

. . .

(k + 1 − x)yk + (x − k)yk+1

. . .

(N − x)yN−1 + (x − N + 1)yN

.

where y0, y1, etc are the unknown parameters and once we have them then we know
function f . Now for every i the corresponding term in the summation of Eq. (3.1)

( f (pi) − qi)
2

if we set k = pi, in other words k is the biggest integer that does not exceed pi,
becomes

((k + 1 − pi)yk + (pi − k)yk+1 − qi)
2.

3.2. Dealing with the Physical Constraint

To minimize S ph we differentiate with respect to the unknowns yl for l = 0. . . N ,
but for every l only the term that happens to have ayk such thatk = l or a yk+1 such that
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y + 1 = l will be non zero. So each term in the summation of Eq. (3.1) will contribute one
equation whenl = k and one more whenl = k + 1. The first differention then looks like

∂
∂yk

((k + 1 − pi)yk + (pi − k)yk+1 − qi)
2 =

2(k + 1 − pi)((k + 1 − pi)yk + (pi − k)yk+1 − qi)

and finaly we get this equation

(k + 1 − pi)
2yk + (pi − k) (k + 1 − pi)yk+1 = (k + 1 − pi)qi.

Similarly, when we differentiate with respect toyk+1 we get

(k + 1 − pi) (pi − k)yk + (pi − k)2yk+1 = (pi − k)qi.

All is nice and good, but what do we do with these two equations. Where do they fit and
how do we find theyk ’s. These two equations can be seen as the following system of lin-
ear equation written in matrix form





(k + 1 − pi)
2

(pi − k) (k + 1 − pi)

(pi − k) (k + 1 − pi)

(pi − k)2









yk

yk+1





=




(k + 1 − pi)qi

(pi − k)qi




.

We can write the same equation in an even better way by including all theyk ’s and a big
square matrix in which all but four of its elements are zero and similarly for the vector of
the knowns on the right hand side












.

.

.

(k + 1 − pi)
2

(pi − k) (k + 1 − pi)

(pi − k) (k + 1 − pi)

(pi − k)2

.

.

.
























y0

.

.

yk

yk+1

.

.

yN













=













0

.

.

(k + 1 − pi)qi

(pi − k)qi

.

.

0













.

This is an equation that has an enviable property. It is tridiagonal, ie only three diagonals
have non zero elements.Now notice that for every pi we get onek = pi and one such
equation as above. Then all we have to do is add these equations together and since the
matrices are all tridiagonal, we get a tridiagonal matrix in the end. The matrix might not
be invertible, but then we are not done yet. We still have the smoothing term. But before
we go there, in case anyone is curious what would happen if instead of linear interpola-
tion we used quadratic or, even better, cubic, the matrix would have five or sev en non
zero diagonals. These are not as easy to invert as tridiagonal, but still better than full
dense matrices.

3.3. Dealing with the Smoothness Constraint

The smoothness component of the least squares has to take the form of the square of
the first derivative. Everything else would be too much work for our sensitive minds. So
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Ssm =
N−1

i=0
Σ (yi+1 − yi)

2

where we approximate the first derivative with a finite difference. We could use some-
thing fancier but then we are discussing the basic principles, not showing off our toler-
ance to mathematical brutality. Differentiating with respect to the unknownsyl we get

∂
∂yl

N−1

i=0
Σ (yi+1 − yi)

2 =

N−1

i=0
Σ ∂

∂yl
(yi+1 − yi)

2 =

N−1

i=0
Σ 2


∂(yi+1 − yi)

∂yl
(yi+1 − yi)




2
N−1

i=0
Σ (δ (i + 1 − l) − δ (i − l))(yi+1 − yi)

2
N−1

i=0
Σ δ (i + 1 − l) (yi+1 − yi) − 2

N−1

i=0
Σ δ (i − l) (yi+1 − yi)

where

δ (n) =




n = 0 :

n ≠ 0 :

1

0

which means that from the each summation the only terms that survive are the ones
wherei + 1 = l or i = l − 1 and i = l respectively. So the derivative of Ssm with respect to
the unknownsyl becomes

2(yl − yl−1) − 2(yl+1 − yl)

and since this is equated to zero we finally get

−yl−1 + 2yl − yl+1 = 0.

It is hard not to notice that it is essentially the second derivative as we could have guessed
if we remembered anything at all from the previous section. Anyway, if we write it in
matrix form as above, for every yl we get
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


. . . −1 2 −1 . . .


















y0

.

.

yl−1

yl

yl+1

.

.

yN














= 0

Since we get this single equation foryl , if we combine the equation for all theyl ’s we get













2

−1

−1

2

−1

−1

2

.

−1

.

.

.

.

−1

.

2

−1

−1

2

−1

−1

2


























y0

.

.

yl−1

yl

yl+1

.

.

yN














=














0

.

.

.

.

.

.

0














which involves another tridiagonal matrix. We can add the two tridiagonal matrices, and
the corresponding vectors of knowns (the one of them is conveniently all zeros) and get
the final tridiagonal system of equations to solve. The solution is particularly fast because
mathematicians, being very smart, have inv ented nice methods to solve them fast. Unfor-
tunately, when we go to two dimensions, we are not so lucky. The mathematicians that
worked on that particular kind of matrices (tridiagonal with fringes) were not as smart
and we do not have that good solutions.
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