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3. Regularization

Since we got a nice taste of what regularization i te€ a generic problem of the
type that is usually handled with regularization. The simplest such problem is smooth
interpolation in one dimension. This is an important problem, not because it is such a
good way to interpolate, but because it can be generalized in diféerent ways and
form the basis of manvery applied algorithms li “snales”, “membranes”, and “thin
plates”. Despite their silly names these aggyvimportant and very applied techniques (I
do not want to scare you from going to the doctor) in medical imaging and other areas.

The problem is bestxplained by Fig. 3.1. Wwant to find a line that goes “near”
near these points and is “smooth”. Both therds “near” and “smooth” admit digrent
interpretations but we aim for the simplestr Ehe “near” we ha& aly one choice if we
want to keep things simple and this is least squares.ttte “smooth” we hae nore
choices but all of them wolving a form of least squares.éan minimiza the square of
the first denative, the square of the second or a weighted sum of the twaawgo to
the third dewative a beyond but this is not very common. Finally wesbd decide hav
much emphasis we put on the nearness or the smoothness which is controlled by the
parameten in the expression
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Figure 3.1: The question is how to find a line that passes “near” all these points and is “smooth”.
The word “smooth” can have different meanings as can the word “near”.
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S= Sph + Ssm
whereS is the expression we want to minimiz&,, represents the ghical constraint,
that relates to the nearness &g represents the smoothness.

Let us nev start with the plgsical contraint. W haveto determine a functiori (x)
that passes near the points y;], or in more mathematical terms

f(p)—q
is small for alli. Since we knav and love least squares, thatwhat we use:

M-1
Sph = ;o (f(p) - a)> (3.1)

3.1. Representation of an Arbitrary Function.

The net problem is hav we represent functiorf . The choices are mgnWe wuld,
for example approximaté with a polynomial. But we wuld need a very high dece
poynomial for a function that tries to pass close to yraints and such polynomials are
difficult to handle. W ocould also represenit as a sum of sines and cosines, but this will
lead to complicated equations thatalve the inversion of lage matrices with very few
zeros. The best method is to represkfily a set of regular points that it passes through
and interpolate between these points withr tiegee polynomials. This leads to simple
equations that wolve the inversion of matrices that are mostly zeros. make aur life
even easier we will interpolate between succesgoints with straight lines. So we define
f as

Os<x<1: (1-X)Yo+XYy;

Ol<x<2: (2-x)y; +(x-1)y,

22<x<3: (3= X)Yz +(x-2)y;
f(X):D

Ekgxgk+1: (K+1-X)yx + (X=K) Y1

0 ..

ON-1<x<N: (N-=-X)yn-1+(X=N+1yy

whereyy, yi, €c are the unknen parameters and once wevlahem then we kne
function f. Now for every i the corresponding term in the summation of Eqg. (3.1)

(f(pi)_qi)2

if we setk =[p;[3 in other words k is the biggest integer that does nateed p;,
becomes

(K+ 1= p)yi+ (P = K)Yier = ).

3.2. Dealing with the Physical Constraint

To minimize S,, we differentiate with respect to the unkns y, for | =0---N,
but for every | only the term that happens toveaay, such thak =1 or ay,,; such that
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y+1 =1 will be non zero. So each term in the summation of Eq. (3.1) will contribute one
equation wheth = k and one more whdn= k + 1. The first differention then looks like

0
Ev (K+1-p)Yi + (P — K)Yiea — ) =
Yk

2(k+1-p)((k+ 1= p)yk +(Pi = K)Yke1 — i)
and finaly we get this equation

(K+1=p)?Yi+ (P = K) (K + 1= P)Yies = (K+ 1= py)g.
Similarly, when we differentiate with respectygp,; we get

(k+1=p) (P = K)Yi + (P = K)*Yirr = (pi = K)Gi.-

All is nice and good, but what do we do with these eyuations. Where do thdit and
how do we fnd they,’s. These tw equations can be seen as the follny system of lin-
ear equation written in matrix form

O (k+1-p)? —K)(k+1-p)00y, O Ok+1-p)g O

2 p) (pi = k) ( ! P) g Ve o= PG

P~k (k+1-p) (pi = K) vk g (R—Ka
We a@an write the same equation in arere better way by including all thg,’'s and a big
square matrix in which allus four of its elements are zero and similarly for the vector of
the knowns on the right hand side
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k+1-p)g
(pi —K)a

(k+1-p)° (pi —K) (k+1-pj)
(pi —K) (k+1-pj) (pi —k)?
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This is an equation that has an enviable prop#rty tridiagonal, ie only three diagonals
have ron zero elementsNow notice that for gery p; we get onek = [p;jand one such
equation as alve. Then all we hee  do is add these equations together and since the
matrices are all tridiagonal, we get a tridiagonal matrix in the end. The matrix might not
be invertible, but then we are not done yeteill have the smoothing term. But before

we go there, in case yne is curious what would happen if instead of linear interpola-
tion we used quadratic ,oeven better cubic, the matrix would he five a seven non

zero diagonals. These are not as easy \tertiras tridiagonal, but still better than full
dense matrices.
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3.3. Dealing with the Smoothness Constraint

The smoothness component of the least squares ha® thagkrm of the square of
the first dewative. Everything else would be too much work for our semsitiinds. So
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Z (Vi1 = ¥i)

where we approximate the first detive with a finite difference. W ocould use some-
thing fancier but then we are discussing the basic principles, netrghoff our toler
ance to mathematical brutaliifferentiating with respect to the unknowpswe get

0 N-1

0y| |Z(y|+l | -

N-1 9

;Oal

Ea(yul )
Z 2D oy,

(Yier — yl)2 =
(Vi =¥ ]
2 zo @G +1-1)= 3G =) (Yis - i)

N-1

N-1
2 EO O(i+1-1) (Yisa — i) =2 EO o(i =1) (Yiss — i)

where
n=0: 1
o(n) =
() Snio: 0

which means that from the each summation the only terms thavesuaei the ones
wherei+1=1ori=1-1andi =1 respectrely. So he dewative d Sy,, with respect to
the unknownsy, becomes

201 = Y1-1) =2(Vis2 = W)
and since this is equated to zero we finally get
~Yi-1+2y; = Y41 = 0.
It is hard not to notice that it is essentially the secondaamre & we ould have guessed

if we remembered atthing at all from the previous section. Yamay, if we write it in
matrix form as abee, for every y, we get
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Since we get this single equation fgr if we combine the equation for all thg's we get
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which involves another tridiagonal matrix.eMan add the te tridiagonal matrices, and

the corresponding vectors of kmos (the one of them is camniently all zeros) and get

the final tridiagonal system of equations to solve. The solution is particularly fast because
mathematicians, being very smarty@anvented nice methods to sewhem fast. Unfor
tunately when we go to te dmensions, we are not so lyckrThe mathematicians that
worked on that particular kind of matrices (tridiagonal with fringes) were not as smart
and we do not he that good solutions.
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