
1 . 1

SQL
The Basics
Advanced
Manipulation
Constraints
Authorization

1 . 2

Table of Contents
SQL 0

Table of Contents 0/1
Parke Godfrey 0/2
Acknowledgments 0/3

SQL: a standard language for accessing databases 1

SQL: origins 1/1

The basic block 2

Running Examples 2/1

Single-relation queries () 3

1 . 3

Parke Godfrey
2016-10-26 initial [v1]
2016-10-31 [v2]
2016-11-07 [v3]

1 . 4

Acknowledgments
Thanks

to Jeffrey D. Ullman
for initial slidedeck

to Jarek Szlichta
for the slidedeck with significant refinements on which
this is derived

2 . 1

SQL: a standard language for accessing databases

Many say SQL stands for Structured Query Language. It

is effectively the standard for relational database

systems.

Knowing SQL, you will know how to access and

manipulate data in virtually all relational database

systems!

E.g., Oracle, Microsoft SQL Server, IBM DB2, SAP

Sybase, PostgreSQL, MariaDB, MySQL Teradata, IBM

Informix, and Ingres.

Oh, and Microsoft Access, MongoDB, SQLite, Empress,

…

…

2 . 2

SQL: origins
SQL is based on the relational algebra and the tuple relational calculus.

It is a declarative query language. (The database engine finds a “best” way to evaluate the

query; this is called query optimization.)

The initial version was developed in the early 1970's and was called SEQUEL, for Structured
English Query Language.

SQL became

an ANSI (American National Standards Institute) standard in 1986, and

and ISO (International Organization for Standardization) standard in 1987.

SQL includes

a data definition language,

a data manipulation language, and

a data control language

in addition to being a “data query language”.

3 . 1

The basic block
select … from … where…

select desired attributes
from rel'ns to source from
where filter for which tuples to keep

3 . 2

Running Examples
Our pub schema

4 . 1

Single-relation queries ()
Just lists one table in the from clause.

conceptual evaluation

Think of a tuple variable visiting each tuple of the rel'n
from the from clause.

1. Return the tuple if the logical condition in the where
clause evaluates as true

2. projecting the attributes defined — possibly an
extended projection! — by the select clause.

4 . 2

Example
What beers are made by Anheuser Busch?

select name
from Beer
where manf = 'Anheuser Busch';

4 . 3

The result of the query
is a table (rel'n), of course!

In this case, it is a single-columned table. E.g.,

name
Bud

Bud Lite
Michelob

…

4 . 4

“*” in the select clause
When there is one relation in the from clause, “*” in the
select clause stands in for all attr's of the rel'n.

E.g.,

select *
from Beer
where manf = 'Anheuser Busch'

Bad practice!

4 . 5

The result of the query
E.g.,

name manf
Bud Anheuser Busch

Bud Lite Anheuser Busch
Michelob Anheuser Busch

… …

4 . 6

Renaming attributes
If you want an attribute to have a new name, use “as
new_name”.

E.g.,

select name as beer, manf
from Beer
where manf = 'Anheuser Busch';

4 . 7

Expressions in the select clause
Sure! Just as with extended projection, most any
expression that makes sense can appear as an element
of the select clause.

E.g.,

select pub, beer,
 price * 114 as priceInYen
from Sells

4 . 8

Constants as expressions

select drinker,
 'likes Bud' as whoLikesBud
from Likes
where beer = 'Bud';

4 . 9

The result of the query
E.g.,

drinker whoLikesBud
Elga likes Bud

Franck likes Bud
… …

5 . 1

Complex conditions in the where clause

“boolean” operators and, or, and not.

comparisions “ ”, “ ” (SQL's “ ”), “ ”, “ ”, “ ”, and
“ ”.

And many, many other operators defined in the SQL
standards that produce ”boolean”-valued results.

5 . 2

Example: complex condition

select price
from Sells
where pub = 'Joe''s Bar'
 and beer = 'Bud';

How many tuples does this query return? Why?

5 . 3

String patterns
A condition can compare a string to a pattern by

attribute like pattern
attribute not like pattern

A pattern is a quoted string.

% is for any string
_ is for any character.

SQL predates Java, Perl, Python, etc.! So the regex syntax for pattern matching is
completely different that the “standard” regex we know and love from, for example, Java.
Sigh.

5 . 4

Example: like

select name
from Drinker
where phone like '%555-____';

6 . 1

NULL “values”
A tuple in SQL reln's can have NULL as a “value” for one
or more of its attr's.

The meaning is contextual. Two common cases.

missing value. E.g., we know that Joe's Bar has an
address, but we do not know what it is.

inapplicable (There is no value). E.g., the value of attr.
spouse for someone who is unmarried.

6 . 2

SQL is a three-valued logic
not a two-valued (boolean) logic, because of nulls!

The values are true, false, and unknown.

“anything = NULL” is unknown
“anything <> NULL” is unknown

This includes “NULL = NULL” and “NULL <> NULL”!

In evaluating a query, we only accept tuples that evaluate to true wrt the where clause;
anything that evaluates to false or to unknown, we reject.

6 . 3

(Surprising) example
pub beer price

Joe's Bar Bud NULL
select pub
from Sells
where price < 2.00
 or price >= 2.00;

The query returns the empty table!

7

Distinct vs All
SQL allows us to choose set or bag semantics per query (or sub-query).

will return a set of tuples (that is, with any duplicates removed).

will return a bag of tuples (that is, without duplicates being removed).

select distinct …

select all …

The keyword distinct or all after select is optional; the default is all.

8 . 1

Multi-relation queries ()
We may have more than one table listed (sourced) in the
from clause. Distinguish attr's of the same name by
reln.attr.

conceptual evaluation

1. Apply the cross-product across the reln's in the from
clause.

2. For each tuple in the result, if the tuple evaluates to
true wrt the where clause, then

3. return the projection of the tuple wrt the select clause.
Note that any join criteria that we have in mind must be explicitly stated in the where
clause.

8 . 2

Example: joining two tables

select beer
from Likes, Frequents
where pub = 'Joe''s Bar'
 and Frequents.drinker = Likes.drinker;

(Any attr. name only in one of the tables does not need
to be disambiguated — have a table prefix — in SQL.)

In English?

8 . 3

Variables / “aliases”

select beer
from Likes as L, Frequents as F
where pub = 'Joe''s Bar'
 and F.drinker = L.drinker;

This is a nice shorthand, and can improve readability.

But additionally, we must have table aliases supported
by SQL! Why?

9 . 1

Intersection, Union, and Except (“ ”)
Simply place the keyword between two select … from
… where … blocks. E.g.,

select … from … where …
union distinct
select … from … where …

Takes an optional keyword of distinct or all after
(with all as the default).
The two blocks must be schema compatible.
The names of the attr's in the answer-table schema
are inherited from the first block.

9 . 2

And that's all!
for the basics, that is
Oh…and anywhere that a table can appear in an SQL

query, another SQL query can appear instead!

We call this a sub-query.

This is because SQL is extremely composable, just as

is the relational algebra.

10 . 1

Aggregation
We add aggregate operators that can be used in the
select clause as attr. / column definitions.

E.g., sum, count, avg, min, and max.

Rule. May not mix non-aggregate and aggregate
operators with a select clause.

A select … from … where … query with aggregrate
operators returns exactly one tuple in the answer table.

10 . 2

Example
How many drinkers are there?

select count(*) as #drinkers
from Drinker;

10 . 3

Example
How many drinkers live on Spadina Ave?

select count(*) as #drinkers
from Drinker
where addr like '%Spadina Ave%';

10 . 4

Extending aggregation
Aggregation is quite powerful. But it looks limited since

one may not mix non-aggr. and aggr. columns in the
select clause, and
in that an aggr. query returns just one tuple (the
“aggregate”).

For example, say we want to know, for each type of
beer, how many (count) drinkers like that beer. We
want a two-column answer table — and
— that would report that with multiple rows (one for
each type of beer).

10 . 5

By composition
By composing with sub-queries, we can actually already
write this!

select beer,
 (select count(*)
 from Likes L
 where L.beer = B.beer)
 as #drinkers
from (select distinct beer
 from Likes) as B

10 . 6

The result of the query
E.g.,

beer #drinkers
Bud 35

Bud Lite 2
Michelob 47
Molsons 59

… …

10 . 7

Wait, what?!
Okay, that query is a bit hard to grôk…

Likely because it uses a correlated sub-query, as well as

a sub-query within the select clause!

But it is a beautiful illustration of just how powerful

composition is.

We will be coming back to that query — and to

correlated sub-queries — shortly. It will start to make

sense after that.

11 . 1

The group-by clause
The group-by clause provides us a meaningful way to
mix non-aggregate attr's and aggregate attr's in the
same select clause.

In the group by, we list the (non-aggr.) attr's that we
want to use in the select.
There will be one answer tuple per value combination
over the group-by attr's that results in the underlying
query.
The values of the aggr. attr's for that tuple will be wrt
aggregation over the tuples having that group-by
value.

11 . 2

Previous example
Number of drinkers who like each beer

select beer, count(*) as #drinkers
from Likes
group by beer

11 . 3

Conceptual evaluation: group by
1. Evaluate the “underlying” query — the query without

the aggregate operators or the group by.
2. Partition the resulting tuples by the group-by

attributes' values.
3. For each resulting group from the partition, compose

the answer tuple
a. with the values of the group-by attributes' as that of

the group, and
b. computing the aggregate values over the tuples of

the underlying answer set that belong to the group.

11 . 4

The having clause
The having clause is a counterpart to group-by.

It optionally comes after the group-by clause.

It lists conditions that the aggregated tuples —
resulting from the “select … from … where …” and
then “group by” evaluation — must meet (i.e., evaluate
to true wrt).

The conditions may only refer to aggregate columns.
Why?

Note that having is extra in that we do not technically need it to write the same queries.

11 . 5

Example: Having

Query. For each beer (that at least ten drinkers like),
how many drinkers like that beer?

select beer, count(*) as #drinkers
from Likes
group by beer
having count(*) >= 10.

11 . 6

Example: Having (2)

select beer, count(*) as #drinkers
from Likes
group by beer
having #drinkers >= 10.

By the standards, this is illegal syntax! the name
#drinkers is not within the scope of the having clause.

Some database systems do allow it, though. (Sadly, not
DB2!)

11 . 7

Example: Having (3)

without the having!

So, having is “syntactic sugar”, but is so useful, it is worth having in SQL.

But this sub-query “trick” can be useful when we want to use the names that we have given our
aggregate columns.

select beer, #drinkers
from (select beer,
 count(*) as #drinkers
 from Likes
 group by beer
) as WhoLikesWhat
where #drinkers >= 10;

12 . 1

Sub-queries
Where are we allowed to put sub-queries?

Anywhere that a table is expected! And more…

1. In the from clause, replacing a table name with a
query instead.

2. In the where clause, using special predicates.

3. In the select clause!

12 . 2

Sub-queries in the from clause

This provides us a simple way to nest queries.

By the standards, one needs to provide the nested
query an alias, regardless of whether it is used.

Such a sub-query cannot be correlated.

12 . 3

Example
select Z.name as pub, Z.addr
from (select distinct P.name,
 P.addr
 from Pub P, Sells S
 where P.name = S.pub
) as Z

Sub-queries in the where clause

SQL provides predicates to compare column values
with sub-query results.

 > all (select from …)
and for “= all”, “< all”, “>= all”, etc.

 > any (select from …)
and for “= any”, “< any”, “>= any”, etc.

, …, in
(select , …, from …)
exists (select * from …)

And, of course, all these can be used with “not”.

12 . 412 . 5

Example

select D.name as drinker, D.addr as home
 P.name as pub, P.addr as address
from Drinker D, Pub P
where (D.name, P.name) in (
 select F.drinker, F.pub
 from Frequents F
)

12 . 6

Sub-queries in the where clause (2)
correlation

Sub-queries in the where clause can be correlated.

All variables / table aliases in the containing query
(and above, if that query is nested) are visible to it.

12 . 7

Example w/ correlation
select D.name, D.addr
from Drinker D
where not exists (
 select S.beer
 from Sells S
 except
 select L.beer
 from Likes L
 where D.name = L.drinker
)

12 . 8

Sub-queries in the select clause

Such a sub-query should have a single-column
schema and return at most one value per “invocation”.
(It is a runtime error if it returns more.)

If the sub-query returns no answer tuple for an
invocation, the return “value” is taken as NULL.

Variables (table aliases) in the containing query (and
above) are within its scope, so can be used for
correlation.

13

Detour: Examples
See .SQL Examples over Colour Schema (PDF)

14 . 1

Data Manipulation Language
How to update data in the database

insert

add new tuples to a table

update

change tuples' columns' values in a table

delete

delete certain tuples from a table

14 . 2

insert

insert into <table> (<attr's>) values
 (<tuple #1>),
 (<tuple #2>),
 …
 (<tuple #n>);

where the tuples are lists of values.

The attribute list after table is optional. If left out, we
have to match the schema in the tuples as declared in
the table's create.

14 . 3

Example insert
Add the tuple to that Sally likes Bud:

insert into Like (drinker, beer) values
 ('Sally', 'Bud');

14 . 4

Transactions
What is the difference between

and

?

insert into Like (drinker, beer) values
 ('Sally', 'Bud'),
 ('Franck', 'Grolsch');

insert into Like (drinker, beer) values
 ('Sally', 'Bud');
insert into Like (drinker, beer) values
 ('Franck', 'Grolsch');

14 . 5

insert is a transaction
As such, it is under the all-or-nothing principle: all the
transaction is completed (commit) or none of it is
(rollback).

Why might an insert transaction fail?

14 . 6

Specifying the attributes
We may add to the relation name a list of attributes.

Two reasons to do so.

1. We forgot the standard order of attributes for the
relation.

2. We do not have values for all attributes, so we want
the system to fill in missing components with NULL or
a default value.

Note that it is good practice always to specify the attributes, for the same reasons it is good
practice to not use “ ” in select.

14 . 7

Adding default values
In a create table statement, we can follow an attribute
by default and a value. When an inserted tuple has no
value for that attribute, the default will be used.

E.g.,

create table Drinker (
 name char(30) primary key,
 addr char(50)
 default ’123 Front St’,
 phone char(16)
);

14 . 8

Example insert w/ default
insert into Drinker (name) values
 ('Sally');

resulting in

name address phone
Sally 123 Front St NULL

… … …

14 . 9

Anywhere a table…
Okay, you've said that anywhere I put a table name in

SQL, I can put a subquery instead. Ha! What about in an

insert?! Can I replace the table name with a sub-query?

Of course! With caveats.

The rules about what is a legal sub-query in an insert
are involved. But essentially, it must be unambiguous

what the update to what base table is to be made.

14 . 10

.

And a subquery instead of values?
Yes

E.g., enter into a table PotentialFriends (name) those
drinkers who frequent at least one pub that Sally also
frequents.

insert into PotentialFriends (
 select F.drinker
 from Frequents S, Frequents F
 where S.drinker = 'Sally'
 and S.pub = F.pub
 and S.drinker <> F.drinker
);

14 . 11

values
Hey, values is cool! Can I use it as a sub-query in other

places in place of a table name?

Yes.

15 . 1

update
To change certain attr's in certain tuples of a rel'n.

update <table>
set <list of attr assigments>
where <condition on tuples>

15 . 2

Example: update
Change drinker Fred's phone number to ‘555-1212’.

update Drinker
set phone = '555-1212'
where name = 'Fred';

Does this only update one tuple?

15 . 3

Example: update of multiple tuples
Make the maximum price for a beer.

update Sells
set price = 4.00
where price > 4.00;

15 . 4

delete and sub-queries
We can use sub-queries (with correlation too) in set.

We can use sub-queries (with correlation too) in the
where clause, of course.

And we can use a sub-query in place of the table
name after delete (with caveats).

Again, just as with insert, the rules about what is a legal sub-query to replace the table
name are involved. But essentially, it must be unambiguous to what base table the
deletions are to be made.

Something sad: we are not allowed use of the with clause here!

16 . 1

delete
To delete tuples from some table satisfying some
condition:

delete from <table>
where <condition>;

16 . 2

Example: delete
Delete from Like the fact that Sally likes Bud.

delete from Likes
where drinker = 'Sally'
 and beer = 'Bud';

SQL | EECS-3421-A: Introduction to Database Systems | Fall 2016 16 . 3

delete & sub-queries
Can use sub-queries (with correlation) in the where
clause, of course.

Can replace the table name in the delete's from
clause, with the same caveats for insert and update.

