
1 . 1

Design Theory
1. Keys & FDs
2. The Normal Forms
3. Reasoning with FDs
4. Normalization

1 . 2

Table of Contents
Design Theory 0

Table of Contents 0/1
Parke Godfrey 0/2
Acknowledgments 0/3

1. Keys & FDs 1

Notation: functionally determines 1/1
Notation: keys & superkeys 1/2
Notation: functional dependencies 1/3
Canonical form 1/4
Shorthand for FDs 1/5

1 . 3

Parke Godfrey
2016-10-05 initial [v1] 2016-10-17 [v2]

1 . 4

Acknowledgments
Thanks

to Jeffrey D. Ullman
for initial slidedeck

to Jarek Szlichta
for the slidedeck with significant refinements on which
this is derived

2 . 1

1. Keys & FDs

2 . 2

Notation: functionally determines
Let be the set of attr's of table .

If subset of attr's is “the” key of , then there is at
most one tuple with given values for the attr's in in
(any instance of) table .

Another way to think of this is that, given values for ,
there is a distinct value for each attr. in .

In this case, we say that functionally determines .
We denote this by

2 . 3

Notation: keys & superkeys
Given — the set of all attr's of table — we call any
subset such that a superkey of table .

If no proper subset of a superkey for is also a
superkey for — that is, — then we
call a key of table .

Notation: functional dependencies
We might happen to know that, in some domain,

holds, where , but ; that is,

.

Thus, is not a superkey of ! But such things as

 will be important.

We will call a functional dependency (“FD”).

Note. Call an FD a superkey FD if its left-hand side is

a superkey; call it a key FD if its LHS is a key.

Not all FDs are superkey FDs!

2 . 42 . 5

Canonical form
splitting right-hand sides
Consider where . Then that
FD is equivalent to the set of FDs

We generally express FD’s with singleton right-hand
sides.

There is no splitting rule for left-hand sides! That
would be incorrect.

2 . 6

Shorthand for FDs
As shorthand, instead of using “{”'s and “}”'s everywhere,
when we are using single letters for attr's, we just munge
them together.

E.g., we write as .

3 . 1

Example: Drinker & FDs

Here, we mean the drinker () likes that , and it

is manufactured by .

Reasonable FDs to assert:

Equivalent to

3 . 2

Example: key of Drinker
 is a key of because neither

nor is a superkey.

In this case, there are no other keys.

But there are lots of superkeys! Namely, any superset
of .

3 . 3

Visualizing
We sometimes draw out FDs to see what is going on.

N A B M F

4

Where do FDs come from?
The designer presribes them by naming keys.

From real-world “constraints” that the designer knows
and prescribes.

E.g., “no two classes can meet in the same room at
the same time”

Because we may have FDs in addition to the prescribed key FDs, additional key FDs might
exist.
We may have to assert our FDs, then deduce the keys by systematic exploration!

5 . 1

Problem: non-key FDs
Non-key FDs are problematic, because they allow for the
potential of anomalies.

our game: Design to have only superkey FDs.

5 . 2

Anomalies / redundancies
update anomaly: one occurrence of a fact is
changed, but not all occurrences are.

deletion anomaly: a valid fact is lost when a tuple is
deleted.

The goal of relational schema design is to avoid such
anomalies and redundancy.

Non-key FDs cause these problems because these
violate our “single source of truth” mandate.

5 . 3

Example: anomalies
deletion anomaly.

No drinker likes the beer Bud.

Thus, no tuple appears in with .

Then we do not have the information that and .

insertion anomaly.

Say there is a tuple in with and (with, say,

). correct

Someone accidentally adds another tuple later with and

(with, say,). incorrect

Note. Our key of has not been violated.

Who manufactures Bud?

6 . 1

2. The Normal Forms

6 . 2

First pass
What the normal forms do
1. 1NF: Every table (relation) has a key prescribed.

(Trivial to achieve. Why?)
2. 2NF: Every table is in 1NF and no table has a partial-

key dependency.
3. 3NF: Every table is in 2NF and no table has a

transitive dependency.
4. BCNF: Every table is in 3NF and no table has a back

dependency.

If we can achieve BCNF, we should be good to go!

6 . 3

Partial key dependencies (2NF)
Consider ().

S C G N

“The” key FD is clearly .

We also have the non-key FD .

We call this a partial-key dependency because its

LHS is a proper subset of a key.

E.g., .

Transitive dependencies (3NF)
Consider ().

E N L W

“The” key FD is .

We also have the non-key FD .

We call this a transitive dependency because its

LHS and RHS are not subsets of any keys.

E.g., and .

6 . 46 . 5

Back dependencies (BCNF)
Consider ().

S F C G

“The” key FD is .

We also have the non-key FD .

We call this a back dependency because its LHS

seems to not be a subset of a key but its RHS is

part of a key.

E.g., .

7 . 1

Second pass
Formally defining things
But your “definitions” above seem fuzzy!

“Seems to not be a subset of a key?!”

The examples above give you a feel for what is going on.

Why are they not formal definitions?

We did not say what the situation is when

the LHS or RHS of a non-key FD overlaps with a key,

or
there is more than one key.

7 . 2

What were the keys in ?
Well, . That was stated!

But also !

But then… wouldn't be a partial-key
dependency?!

Formal definitions
1NF: Each attr. is an elementary type. A key is defined
for each relation.
2NF: Whenever holds in and ,

 is prime, or
 is not a proper subset of any key of .

3NF: Whenever holds in and ,
 is prime, or
 is a superkey of .

BCNF: Whenever holds in and ,
 is a superkey of .

An attr. is prime if it is part of any key of . E.g., in .

7 . 38 . 1

3. Reasoning with FDs
Some FDs that hold for a relation may be implicit.

That is, an implicit FD may logically follow from the set of
known FDs.

We will need to infer the implicit ones. For example, we
need to know a relation's keys to test whether it is in
BCNF.

Is this hard? Well…yes and no.

8 . 2

Why might it be hard?
How many different keys can a single-key rel'n

have?

Exponential!

Consider a rel'n with attr's. Then, there are possible

different keys.

How many possible keys of length ?

8 . 3

Why might it be hard?
How many keys might a rel'n have simultaneously?

There can be lots of FDs! And lots of key FDs too.

Consider I know that , , …, ,
.

There are keys!

There can be an exponential number of key FDs.

8 . 4

What is easy?
From a set of attr's , I can find the closure, , of that
set of attr's easily.

(In fact, there is a linear runtime algorithm known for
this!)

9 . 1

FD axiomatization
A sound and complete set of axioms for FDs is as
follows.

1. Reflexivity. if .

These are called trivial FDs.

2. Augmentation. If then for any
.

3. Transitivity. If and then .

9 . 2

Computing �
Computing the closure of a set of attr's is just the
fixpoint with respect to transitivity then.

Let .

Define .

where .

Then for which .

9 . 3

Ever need to find all keys of a rel'n?

Unfortunately, we might have to.

For instance, to check a schema for meeting normal
form.

See Exercise #9 from (and).Exercises for Study with answers

10 . 1

4. Normalization
Goal: A “correct” schema in BCNF.

Or in 3NF, if that is not possible.

So…how to achieve BCNF (or 3NF)?

10 . 2

Two approaches
decomposition: a top-down approach

Start with our schema and refine it.

synthesis: a bottom-up approach

Start with the prescribed FDs and create a schema
from them.

11 . 1

Decomposition
Method Sketch

1. Find a problematic FD; i.e., one that breaks BCNF.

2. Make the problematic FD “go away”. How?

Let the FD be key of its own rel'n.

That is, split the non-BCNF rel'n into two rel'ns in a

lossless way.

3. Repeat until no more problematic FDs!

See Exercise #16 from (and).Exercises for Study with answers

11 . 2

Two goals
1. lossless decomposition

We must ensure that the final schema can
“reproduce” our original schema. That nothing is
lost.

2. dependency preservation

All of our FDs are ensured by the final schema (by
rel'n's keys).

11 . 3

Lossless join decomposition
Say we have a rel'n schema of and an FD

 that violates BCNF for .

We can break into two rel'ns:

1.

This is just the “FD” itself!

Its key can be , the LHS of the FD.

2.

And the rest of what is left over from

…repeating the LHS of the FD!

This will server as a foreign key from 2) to 1).

The key can be whatever was key for .

11 . 4

Lossless join decomposition (general)
Given and an FD violating — assume that

 is non-trivial, that — replace by
two rel'ns:

1.

2.

11 . 5

What goes wrong if not lossless?
We cannot reproduce the “database” with respect to the
original schema from our decomposed schema.

That is, if we “joined” our two decomposed rel'ns, we
might not recover the original rel'n.

11 . 6

Example of a bad decomposition
Consider with no FDS and I break it into and
. Let our table be

A B C
1 2 3
4 2 5

11 . 7

Example of a bad decomposition (2)
This decomposes into

A B
1 2
4 2

and

B C
2 3
2 5

11 . 8

Example of a bad decomposition (3)
But “joining” these back together () does not
give us the same thing that was in !

A B C
1 2 3
1 2 5
4 2 3
4 2 5

The extra resulting tuples here from the “lossy” join are called spurious.

12 . 1

But what about dependency preservation?

good news

Lossless join decomposition steps can always get us
eventually to BCNF!

bad news

the resulting schema may not be dependency
preserving.

See Exercise #17 from (and).Exercises for Study with answers

12 . 2

Decomposition
Revised Method

1. Find a problematic FD for a rel'n, decompose the rel'n
losslessly with respect to the FD.

2. Repeat until no more problematic FDs!

3. Add back any FDs that are not covered in the resulting
schema as rel'ns.

12 . 3

Can we always have BCNF?
The method above often works, but does not always.

What can go wrong? Some of the non-covered FDs that
we add back in as rel'ns may not be in BCNF!

Well, we could decompose an added, non-BCNF
rel'n…
But then the corresponding FD is not covered again!
Stuck.

The result does arrive always to a 3NF, dependency
preserving schema!

12 . 4

Is there just one lossless decomposition?

Of course not! The decomposition depends on the order
of the decomposition steps we apply.

There may be an exponential number of lossless-join

decompositions.

One of them might be BCNF and dependency preserving

(after we add back in the non-covered)!

But finding this one might be hard.

And it might not even exist!

13 . 1

Synthesis Method
Find a minimal basis of the set of declared (explicit) FDs.

That's it!

13 . 2

Is polynomial!
It is polynomial to find a minimal basis!

The resulting schema is in 3NF and it is dependency

preserving.

Note. There is no notion of “lossless” here; there is no

“original” schema to compare against.

Finding all minimal bases, though, is exponential.

One of them might be in BCNF too!

But this is NP-complete to find.

Design Theory | EECS-3421-A: Introduction to Database Systems | Fall 2016 13 . 3

Minimal basis
1. Throw away any FD that can be derived from the

others (the remaining ones)

Repeat until no such FD remains.

2. Throw away any attr. on the LHS of an FD if the

resulting FD plus the others can derive the original FD.

Repeat until no such FD remains.

See Exercise #18 from (and).Exercises for Study with answers

