
1 . 1

E/R Modelling:
A Conceptual Modelling
Language for Schema

1 . 2

Table of Contents
E/R Modelling: 0

Table of Contents 0/1
Parke Godfrey 0/2
Acknowledgments 0/3

Why a conceptual modelling language? 1

Design flowchart 1/1
Untitled Slide 1/2
Schema semantics 1/3
Design work 1/4

The Entity / Relationship Model 2

1 . 3

Parke Godfrey
2016-09-19 initial
2016-10-03 [v5]

1 . 4

Acknowledgments
Thanks

to Jeffrey D. Ullman
for initial slidedeck

to Jarek Szlichta
for the slidedeck with significant refinements on which
this is derived

2 . 1

Why a conceptual modelling language?

So we can sketch out database-schema designs more
easily, and “see” their semantics / logic more easily.

The relational model just has relations. It can be
harder to see the schema's semantics / logic.

Many conceptual modelling languages are pictoral.

Later, we'll convert E/R designs into relational
schema.

2 . 2

Design flowchart

ideas / requirements

high-level design / specification

relational schema / implementation

relational database (in RDBMS) / realization

2 . 3

Different conceptual modelling languages

the Entity / Relationship Model(ling language)

many dialects!

UML (Universal Modeling Language)

ODL (Object Definition Language)

Many more…

We choose E/R here because it is in many ways the

simplest.

2 . 4

Schema semantics
A schema design should specify

what data the schema represents, and how the data
are related, but

not how the data is used or processed (operational).

In other words, our schema designs are not meant to
be process models.

Again, this is about data independence.

2 . 5

Design work
Design is hard work! And serious business.

The boss or client may know they need a database,
but they do not know what they need in it.

Sketching the key components is an efficient way to
develop a working database.

A design can be explained to lay people.

A design can be iteratively refined.

In software engineering, this is called requirements
elicitation.

3 . 1

The Entity / Relationship Model
entities (things)

relationships: how entities are related

attributes: properties of an entity

attributes are simple values;
e.g., integers & strings

Not structs, sets, lists, etc.

3 . 2

Types (sets)
We assume we will have types of entities & of rel-ships.

For instance, we would have many students (entities),
many classes (entities), and many enrolled (rel-ships).

So, we'll have

an entity set called student,
an entity set called class, and
a rel-ship set called enrolled.

Entity and rel-ship instances of the same type (set)
each has the same set of attributes.

4

E/R diagrams
The E/R model is pictoral.

entity set: a labelled rectangle
rel-ship set: a labelled diamond
attribute: a labelled oval, with a line to the entity set or
the rel-ship set that owns it

Rel-ship sets connect entity sets together that they
relate by lines.

Thus, an E/R diagram is a type of bipartite graph
between entity and rel-ship sets.

5

Example: entity set

Beer

name manf

Entity set Beer has two attributes, name & manf.

Each Beer entity (instance) has values for these two
attributes.
E.g., Bud & Anheuser-Busch

6 . 1

Example: relationship sets

Beer

name manf

Bar

name address

license sells

Drinker

frequents

name address

likes

6 . 2

How to read

Certain pubs sell certain beers.

Certain drinkers like certain beers.

Certain drinkers frequent certain pubs.

Values for license are intended as beer only, full, and
none.

7 . 1

Value of an entity set or rel-ship set

The current “value” of an entity set is the set of entities
that belong to it.

E.g., the set of all pubs in our database.

The “value” of a relationship is the set of relationships
that belong to it.

The “value” of a relationship is a tuple with one
component for each related entity set.

E.g., “Fox & Fiddle”, “Molson” is a sells
relationship.

7 . 2

Example: relationship set value
Thus, an rel-ship value for sells might be

Pub Beer

Pub Beer

Fox & Fiddle Molson
Fox & Fiddle Bud
Clintons Creemore
Clintons Guiness
Clintons Molson

8 . 1

Multi-way relationships
Sometimes, we need a relationship that connects more

than two entity sets.

Suppose that drinkers will only drink certain beers at

certain pubs.

Our three binary relationships likes, sells, and frequents
do not allow us to make this distinction.

But a 3-way relationship would!

8 . 2

Example: 3-way rel-ship

Beer

name manf

Pub

name address

license

Drinker

preference

name address

8 . 3

Example: rel-ship set value
Pub Drinker Beer

Pub Drinker Beer

Fox & Fiddle Franck Molson
Fox & Fiddle Franck Bud
Fox & Fiddle Jeff Bud
Clintons Franck Molson
Clintons Parke Creemore
Clintons Jeff Creemore
Clintons Parke Guiness

9 . 1

Many-many rel-ships
Focus: binary relationships, such as sells between Pub
and Beer.

In a many-many relationship, an entity of either set can
be connected to many entities of the other set. E.g.,

a pub sells many beers; and
a beer is sold by many pubs.

9 . 2

Many-many
a

b

c

d

e

f

1

2

3

4

5

10 . 1

Many-One rel-ships

Some binary relationships are many-one from one entity
set to another.

Each entity of the first set is connected to at most one
entity of the second set.

But an entity of the second set can be connected to zero,
one, or many entities of the first set.

10 . 2

Example: many-one rel-ship
Consider a rel-ship favourite, from Drinker to Beer, and
that it is many-one. That is,

a drinker has at most one favourite beer, but

a beer can be the favourite of any number of drinkers
(including zero).

10 . 3

Many-one
a

b

c

d

e

f

1

2

3

4

5

11 . 1

One-one rel-ship

In a one-one rel-ship, each entity of either entity set is
related to at most one entity of the other set.

Example

Rel-ship best-seller between entity sets Manf
(manufacturer) and Beer.

A beer cannot be made by more than one
manufacturer, and
no manufacturer can have more than one best-seller.
(Assume no ties.)

11 . 2

One-one

a

b

c

d

e

f

1

2

3

4

5

12 . 1

Representing multiplicity
Show a many-one relationship by an arrowhead
pointing to the “one” side.
Show a one-one relationship by arrowheads pointing
to both entity sets.
Two types of arrowheads.

plain arrowhead: zero or one
Each entity of the first set is related to no entity or
one entity of the target set.
rounded arrowhead: exactly one
Each entity of the first set is related to exactly one
entity of the target set.

12 . 2

Favourite: Many-one rel-ship w/ multiplicity

BeerDrinker

likes

favorite

Note that Drinker and Beer have two rel-ships between them. This is fine in E/R.

Thus, an E/R diagram is a multi-graph.

Q) How to ensure a drinker's favourite beer is actually a beer that he or she likes?

12 . 3

Best seller: One-one rel-ship w/ multiplicity

BeerManf best

A beer is the best-seller for 0 or 1 manufacturer.

A manufacturer has exactly one best seller.

13 . 1

Attributes of rel-ships
Sometimes a rel-ship needs attributes.
Such an attribute can be thought of as a property of
“tuples” in the rel-ship set.

BeerPub sells

price

Price is a function of both the Pub and the Beer, not of just one or the other.

13 . 2

Without attributes on rel-ships
Instead, could create an entity set representing values
of the attribute.
Then, make that entity set participate in the rel-ship.

BeerPub sells

pricePrice

Convention: Arrowhead from multiway rel-ship means that all other entity sets together
determine a unique one of these.

14 . 1

“Recursive” rel-ships & roles
A given entity set may appear more than once in a rel-
ship!
To disambiguate, we label the edges between the rel-
ship and the entity set with names called roles.

Drinker

married

hu
sb
an
d w

ife

husband wife

husband wife

Bob Ann
Joe Sue
… …

14 . 2

Buddies

Drinker

buddies

on
e tw

o

one two

one two

Joe Moe
Ann Sue
Ann Moe
… …

15 . 1

Subclasses
A subclass is a special case that has more properties.

E.g., An Ale is a kind of Beer.

Not every beer is an ale, but some are.

Let us suppose that, in addition to the properties —
attributes and rel-ships — of beers, ales also have the
attribute colour.

15 . 2

Subclasses in E/R

Beer

isa

Ale

name manf

colour

Assume subclasses form a
tree.

That is, no multiple
inheritance.

An isa triangle indicates the
subclass “relationship”.

The triangle “points” to the
superclass.

E/R vs OO

In OO, objects are in one class only.

Subclasses inherit from superclasses.

In contrast, E/R entities have representatives in all

subclasses to which they belong.

Rule. If entity E is represented in a subclass, then E is represented in the superclass. (And
recursively up the tree.)

If “Pete's Ale” is an Ale, it is also a Beer.

15 . 316 . 1

Keys (déjà vu)
A key is a set of attributes for one entity set such that no
two entities in this set agree on all the attributes's values
of the key.

(Note that two entities may agree on some, but not all, of
the key attributes's values.)

In a complete E/R diagram, a key must be designated
for every entity set.

16 . 2

Keys in E/R diagrams
We the key attribute(s).

Note. In an isa hierarchy, only the root entity set has a
key; this must serve as the key for all entities in the
hierarchy.

Entity sets have keys.
Rel-ships do not!

16 . 3

Keys in E/R

Beer

isa

Ale

name manf

colour

Name is key for Beer and for Ale.

16 . 4

A multi-attribute key

Class
dept hours

number room

Note that hours and room could also serve as a key
But let us limit ourselves to one key. For now.

17 . 1

Weak entity sets
Entities of entity set might need “help” to identify them
uniquely.

Entity set E is said to be weak if, in order to identify
entities of E uniquely,

we need to follow one or more many-one rel-ships
from E, and
include the key of each of the so connected entity sets
as part of the weak entity's key.

17 . 2

Example of a weak entity set

Name is “almost” a key for football players; but there
can be two with the same name.

Number is certainly not a key, since players on
different teams can have the same number.

But number together with the player's team's name —
as related to the Player, say, by a plays-on many-one
rel-ship — ought to be unique.

17 . 3

Weak entity sets in E/R: plays-on

Player
name

number
Team nameplays_on

Bolded diamond for the supporting many-one rel-
ships.
(In textbook, double-framed.)
Bolded rectangle for the weak entity set.
(In textbook, double-framed.)

Note. The arrowhead must be rounded because each Player needs a Team to compose
his or her key value.

17 . 4

Compositional rules for weak entity sets

A weak entity set must have one or more many-one
rel-ships to other supporting entity sets.
Not every many-one rel-ship from the weak entity set
needs to be supporting.
Each supporting many-one rel-ship must have a
rounded arrowhead; that is, the entity at the “one” end
is guaranteed.
The key for a weak entity set is its own
attributes union the keys from each of the supporting
entity sets.

E.g., Player's number and Team's name is the key
for Player in the previous example.

17 . 5

“Recursively” weak
Can a weak entity set be supported by another weak

entity set?

Of course.

We do not permit cyclic weak dependencies in E/R

diagrams, though; they would not make logical sense.

17 . 6

When are weak entity sets needed?
The usual reason is that there is no global authority
capable of creating unique ID’s.

Example. It is unlikely that there could be an
agreement to assign unique player numbers across all
football teams in the world.

17 . 7

A very powerful modelling tool in E/R

We can “promote” a rel-ship (set) by replacing it with a
weak entity (set).

The weak entity's supporting entities are those the
rel-ship was relating.

Why is this useful?

The “rel-ship” (as a weak entity) can be related to
other (non-supporting) entities!

A weak entity set used in this way is called a connecting entity.

A connecting entity does not contribute any of its own attr's to its key.

17 . 8

Overusing weak entity sets

Beginning database designers often doubt that
anything could be a key by itself.

They make all entity sets weak, supported by all
other entity sets to which they are linked.

In reality, we usually create unique ID’s for entity sets.
(These are called surrogate keys.)

Examples include social-security numbers,
automobile VIN’s etc.

18 . 1

E/R design principles
1. fidelity
2. brevity
3. simplicity
4. naturalness

These guidelines are in order of precedence. For
example, brevity takes precedence over simplicity.

See §4.2 (Design Principles) in the textbook. Note that these slides is my take on design
princples; but they align quite nicely with the textbook's.

18 . 2

1. Fidelity (to the domain)
faithfulness

Be logically true to the real-world domain that we are
modeling.

Capture all of the real-world properties (semantics) of
the domain as is possible and “reasonable”.

18 . 3

2. Brevity (of the data)
avoiding redundancy

The design should not require that a piece of
information be represented more than once.

This is called the principle of single source of truth.

That is, it should not be possible that the same
information appears many times in the same entity
set.

If information can be logically inferred from other
information in the design, it should not be kept.

18 . 4

3. Simplicity (of the schema)
Occam's razor: Keep the design as simple as
possible (but no simpler).

Should contain no elements — entities, rel-ships,
attr's, etc. — that are not necessary.

Should have as few connections as possible.

Precedence: Use attributes before entities, and
relationships before entities.

18 . 5

4. Naturalness (of the model)
Model as naturally as possible the domain.

Entities ought to correspond to real things.

Rel-ships should be understandable.

19

Requirements to specifications
What is your domain?

queries. What questions does the database need to
be able to answer?

transactions. What data-processing activities does
the database need to support?

20

What is your design?

Modelling the domain

1. Choose your entities, attr's, and keys.

What are the important rel-ships among them?

2. Any logical problems; anything missing?

If so, then refine the design.

3. Can the design accommodate the questions (queries) and activities (transactions)?

If not, then refine the design.

4. Can we violate any real-world constraints?

If so, re-design — if possible and if practical! — so that we cannot.

5. Simplify. Repeat.

21 . 1

E/R to relational
Entity set relation (table)

Attributes attributes (columns)
key's Attributes key's attributes

Rel-ship set -> relation for which the attr's are only

Attributes attr's of the rel-ship itself.
key's Attributes all the keys's attr's of the “many”
connected entity sets (but not the “one”'s!)

We may rename attr's to disambiguate!

21 . 2

Entity set relation

Beername manf

Relation:

21 . 3

Rel-ship relation

Beer
name

manf
Drinker

name

address

likes

favourite

buddies

on
e tw

o

married

hu
sb
an
d w

ife

since

since

21 . 4

Combining many-one relations
Okay to combine into one relation

the relation for an entity-set E and
the relations for many-one rel-ships for which E is the

“many”.

Example: and

 combine to make

.

21 . 5

Combining many-one relations

This is compulsory whenever the many-one is
“mandatory participation”; that is, the “one” arrowhead
is rounded, meaning exactly one (as opposed to zero
or one).

21 . 6

Do not combine many-many rel-ships!
Combining Drinker and Likes would be a mistake.

It leads to redundancy. E.g.,

name addr beer

name addr beer

Sally 123 Maple Bud
Sally 123 Maple Miller

Plus, would we combine Likes with Drinker or with
Beer? It would not make sense.

22 . 1

Handling weak entity sets

Relation for a weak entity set must include attr's for its
complete key — including those of the other entity sets
upon which it is weak — as well as its own, non-key
attr's.

The same applies for connecting entities; these simply
add no attr's of their own to the key.

Weak entity set relation

Player
name

number
Team nameplays_on

Note this is the same we did for a compulsory many-
one before.

The addition here is the additional attr's in the key of
the relation resulting from the weak entity on the
“many“ side of the connectiong rel-ship.

22 . 223 . 1

Subclasses: Three approaches
1. object-oriented: a relation per subset of subclasses,

with all relevant attributes.

2. E/R style: a relation for each subclass, with

key attribute(s)

attributes of that subclass

3. using nulls: one relation; “entities” have a null “value”
in attributes that do not belong to them.

23 . 2

Subclass relations

Beer

isa

Ale

name manf

colour

23 . 3

Object-oriented

Beer

name manf

name manf

Bud Anheuser Busch

Ale

name manf colour

name manf colour

Summerbrew Pete's dark

Good for queries like, “Find the color of ales made by
Pete's.”

23 . 4

E/R style
Beer

name manf
Bud Anheuser Busch
Summerbrew Pete's

Ale

name manf colour
Summerbrew Pete's dark

Good for queries like, “Find all beers (including ales) made by Pete's.”

23 . 5

Using nulls
Beer

name manf type colour

name manf type colour

Bud Anheuser Busch beer null
Summerbrew Pete's ale dark

Saves space, unless there are lots of attr. values that
will be null.

And only a single relation, which is simpler.

24

An Example Domain
“Previously”: Parke's Retro Video Shop

25 . 1

A movie rental domain
Scenario: We are running a movie rental store.

We have movies.

We have customers. (We hope!)

Customers rent movies from us.

cust#

lname

fname
address phone#

title

year

studio

Movie

director

Customer

credit#

day_returned

rents

day_taken

25 . 2

A good design?
Any logical problems? Anything missing?

Can the design accommodate the questions and
activities?

Can the design violate any real-world constraints?

Anything missing?

Can add attr's, rel-ships, or entities.

25 . 3

Problem: multiple copies
We may have several copies of a given movie.

More than one copy might be rented at the same time.

We need to know which customer has which copy.

cust#

lname

fname
address phone#

title

year

studio
director

Customer

credit#

day_returned

day_taken

Movie

cassette#

rents

price

26 . 1

Attribute vs Entity
When to promote an attr. to an entity?

1. It needs to participate in rel-ships itself.

Then it must be an entity.

2. The values of the attr. in its entity would be repeated often, or there are other attr's
associated with this one. (Brevity)

E.g., Professor has office#.

It probably should be an entity.

3. The values that the attr. may take are restricted. (strong typing)

Can accomplish this by making it an entity.

26 . 2

Movies and copies
The information about a movie is repeated for as many
copies of that movie we have. This seems awkward…

Soon, we will formalize why this redundancy is
actually problematic, and not just inelegant.
What if we want to catalog a movie, but we have no
copies yet?

To fix this, we separate the notion of a copy of a movie
— call this a cassette — and the movie itself (the
“listing” of the movie).

So, we add an entity Cassette.

26 . 3

Cassettes

title

year

studio
director

Movie

cassette#

title

year

studio
director

Movie

cassette#
Cassette

format

of

A weak entity for Cassette can be used.

But we could use a regular entity too.

What are the differences?

26 . 4

A better design?

cust#

lname

fname
address phone#

Customer

credit#

day_returned

rents

day_taken

title

year

studio
director

Movie

cassette#
Cassette

format

of

Category

cat

in

26 . 5

A better design? (2)
I also added an entity Category for movies (e.g.,
comedy, drama, scifi).

This strongly types the category a movie can be in.

Are we done yet? Can we stop?

Not even close!

27 . 1

New Relationships
Careful for redundancy!
A requirement for our movie rental database is that we

can determine which categories of movies a customer

has rented (for promotions and such).

Q. Have we overlooked this?

27 . 2

Adding “has rented”…

cust#

lname

fname
address phone#

Customer

credit#

day_returned

rents

day_taken

title

year

studio
director

Movie

cassette#
Cassette

format

of

Category

cat

in

has_rented

27 . 3

That's redundant!
No! We had not overlooked this. Which categories a
customer has rented is derivable from which movies he
or she has rented.

Thus, the rel-ship has_rented would be redundant. It
represents a new rel-ship that could be populated with
completely unrelated data.

So, has_rented should not be added.

27 . 4

New rel-ships
But if not redundant…
However, if a new rel-ship represents new information

which is

not derivable from what we already have, and

which is needed for our intended queries and

applications

then we should added it.

For example, say we want to know a customer's favourite category (e.g., romance) for
promotional purposes.

27 . 5

Favourite category

cust#

lname

fname
address phone#

Customer

credit#

day_returned

rents

day_taken

title

year

studio
director

Movie

cassette#
Cassette

format

of

Category

cat

in

favourite

28 . 1

Ambiguity / missing “logic”
cust#

lname

fname
address phone#

Customer

credit#

day_returned

rents

day_taken

title

year

studio
director

Movie

cassette#
Cassette

format

of

Category

cat

in

Missing

A given copy cannot be rented at the
same time by two or more customers.

A given customer may rent the same
copy of a movie more than one time.

Which do we miss? I don't know, but we do miss at least one of these!

28 . 2

One needs changing!

cust#

lname

fname
address phone#

Customer

credit#

day_returned

day_taken

title

year

studio
director

Movie

cassette#
Cassette

format

of

Category

cat

in

favourite

rents

price

Which to change?

28 . 3

Interpretation #1
Only track movies that are out

cust#

lname

fname
address phone#

Customer

credit# day_taken

title

year

studio
director

Movie

cassette#
Cassette

format

of

Category

cat

in

favourite

rents

price

28 . 4

Interpretation #2
Record all rentals forever
Once a rental is recorded in the database, it stays.

First Problem. A customer may rent (the same copy of)
a movie more than one time. The rel-ship rents does not
allow for this!
Solutions?

1. Have more entities participate in rents to fix this.
(a ternary rel-ship)

2. Promote rents to be an entity. (Rental)

28 . 5

Ternary rel-ship attempt #1

cust#

lname

fname
address phone#

Customer

credit#

title

year

studio
director

Movie

cassette#
Cassette

format

of

Category

cat

in

favourite Day
da
y_
ta
ke
n

day_returned

rents

price

Day day

28 . 6

Ternary rel-ship attempt #1 (2)
Problems

1. Should Day be an entity? Do we really want to “store”
days explicitly? (We wouldn't actually have to. But, still
seems awkward!)

2. Rel-ship rents is Customer Cassette Day
(day_taken) Day (day_returned). But is
day_returned always filled in? No!

This does not work because of #2.

28 . 7

Ternary rel-ship attempt #2

cust#

lname

fname
address phone#

Customer

credit#

title

year

studio
director

Movie

cassette#
Cassette

format

of

Category

cat

in

favourite
(d
ay
_t
ak
en
)

day_returned

rents

price

Day day

28 . 8

Ternary rel-ship attempt #2 (2)
This fixes the problematic — fatal! — aspect that the
returned day is not known for any copies that are
currently rented out by making it an attribute again.

But two customers still can rent the same copy of a
movie on the same day!

Why did the previous design (Ternary #1) not handle
this?
Why does this design (Ternary #2) not handle this?
Can you fix it?

And still, overall, an awkward design anyway.

29 . 1

Rel-ship vs Entity
When to promote a rel-ship to an entity?
1. When the “key” of the rel-ship is too restrictive

Can promote the rel-ship to be an entity instead. Then it has a key.

Or the rel-ship should involve more entities so that its “key” is adequate. (Like in the
ternary examples above.)

2. When it seems we need this rel-ship to be involved itself in other rel-ships.

Promote the rel-ship to be a connecting entity. Then it can participate in rel-ships with
other entities.

29 . 2

Rental: Entity solution #1

cust#

lname

fname
address phone#

Customer

credit#

title

year

studio
director

Movie

cassette#
Cassette

format

of

Category

cat

in

favourite

rents for

receipt# price

day_taken

Rental

day_returned

29 . 3

Rental: Entity solution #1 (2)
One problem down, one remains

Handles Problem #1: A customer can now rent the same

cassette a second time.

Still does not handle Problem #2: Two customers may

rent the same cassette at the same time!

How to fix this second problem?

29 . 4

Rental: Entity solution #2
Better keys

cust#

lname

fname
address phone#

Customer

credit#

title

year

studio
director

Movie

cassette#
Cassette

format

of

Category

cat

in

favourite

rents for

receipt# price

day_taken

Rental

day_returned

29 . 5

Rental: Entity solution #2 (2)
Handles both problems now! (Caveat: Two customers
cannot take out the same cassette on the same day.)

Can an entity have more than one key?

We certainly could make receipt# a second key of the
Rental table (relation) in our relational schema.

Of course!

30

An Example Domain #2
StLoB: Saint Lawrence Online Bookshop

31 . 1

A online book purchase domain

cid

cname Club

belongs_to

Customer

eligible

price

Offer

offer

for Book

title

whenbuys

qnty

Gimmick:
Customers belong to clubs.
Via clubs, there are offers on books.

31 . 2

Problems with our initial design?
1. Can a customer buy a book via an offer with a club a
second time?
No.

2. Is every book offered by every club?
No. This does not have to be the case.
But say we do not want this.

3. Are we ensured that, when a customer buys a book
via an offer, that he or she belongs to the club that the
offer is through?
No.
This is my business model! I want to enforce this.

31 . 3

Back to the fundamentals

cid

cname Club

belongs_to

Customer title

cnameClub

offers

Book

Customers belong to Clubs

Books are offered by Clubs

31 . 4

“buys”
We need to relate — a rel-ship — belongs_to and offers.

But that is not legal in E/R!

Okay… Let's promote them to entities, then!

belongs_to Member

offers Offer

31 . 5

And put it all together…

cid

cname

Club

Customer

title

Book

Member

of

who

forfrom Offer

price

when

buys

qnty

How to implement “buys”?

We have a choice.

restrictive: one cname

unrestrictive: two cnames

I intend restrictive here.

31 . 6

To relational

Foreign keys: Add §7.1.1 & §7.1.2 (pp.313–315) to
your reading!

E/R Modelling | EECS-3421-A: Introduction to Database Systems | Fall 2016 31 . 7

To relational w/ foreign keys

FK refs
FK refs

FK refs
FK refs

FK refs
FK refs

