
Database Models

Parke's database
I have a database! Oh? What's it about?

Well, here it is:

That's it? Yes.

42. Yes.

But 42 what?! Kangaroos? Number of cousins? Just the

number itself?!

Needs context
A datum — a piece of data — by itself means nothing.

A datum with context means something.

The context might be a question, and the datum an
answer to the question.

E.g., How many cats does Parke have? 42.

The context might be provided by where that data is
“within” a schema (wrt a database model).

Need to model context
data(base) model

This provides a logical framework for how

data can be organized, and
can be inter-related among themselves.

In other words, it provides a model for context.

schema

A schema is an instance of the data model that specifies how

data is organized, and
is inter-related.

query language

This provides a way to retrieve / query data by context.

And it may provide powerful means to query for data that are inter-related in ways we
had not anticipated beforehand.

Outline

data models
1. the relational model
2. a semi-structured model

e.g., XML
schema (wrt the data model)
1. relational schema
2. e.g., DTD (Document Type Definition)
query languages / ”programming” languages
1. e.g., SQL
2. e.g., XQuery (& XPath)

What is a data(base) model?
It is a mathematical representation for data.

1. relational model:
data organized in tables
the tables can be related in specific ways
the data can be constrained in specific ways

2. semi-structured models:
data organized as labeled trees, or
as labeled graphs

Logical vs physical representation

Data models & schema are about how the data is

logically organized.

How a database system — a database management
system — for a given database model is

implemented, and

how the data is physically organized

are different matters.

This “separation of concerns” is called data independence.

A relation is just a table

Beers

name manf
Winterbrew Pete's
Bud Lite Anheuser-busch

relation name: name of the table. E.g., Beers
attributes: the column headers. E.g., name & manf
tuples: the rows.
cells: individual values (given attribute, given tuple).

That's it?!
Well, yes. (Almost.)

Kind of like a spreadsheet, eh?
But without all the cool functions!
This extreme simplicity of representation will let us

design a powerful, declarative query language,
support the features we want — e.g., integrity &
transactions, — and
build quite efficient database systems.

Even while really simple, lots of data is tabular — that
is, can be fit into tables — in nature.

Relational databases
Used to be about boring stuff. E.g.,

employee records, bank records

Today, the field covers all the largest sources of data,
spanning many new ideas. E.g.,

web search
data mining
social networking
scientific & medical databases
integrating information

Databases everywhere
Databases are hidden behind almost everything you
do on the Web or in an app.

web searches (Google, Bing)
searching at Amazon, eBay
e-commerce

buying concert tickets on-line
scrolling your favourite social-network feed

Instagram, Snapchat, Twitter, Facebook

Database systems everywhere

The functionality of database systems solve many
complications for complex applications behind the
scenes “for free”.

Supports complex information procressing.
(the query language)
Juggles many activities simultaneously.
(concurrency)
Ensures correctness of the results of the activities.
(transaction management)

E.g., two withdrawals from the same account must
each debit the account.

Relational schema terminology
relation schema: relation name and attribute list (set).

And optionally, the types of the attributes.
E.g., Beers(name, manf) or
Beers(name: string, manf: string)

database: collection of relations.

database schema: set of all relation schemas in the
database.

Our running example schema

Beers(name, manf)
Pubs(name, addr, license)
Drinkers(name, addr, phone)
Likes(drinker, beer)
Sells(pub, beer, price)
Frequents(drinker, pub)

bolded attribute means it is (part of) the key

Database schemas in SQL
SQL is primarily a query language for getting
information from a database.

But SQL also includes a data-definition component for
describing database schemas.

Creating / declaring a relation / table
The simplest form is

create table <name> (

 <list of elements>

);

To *delete* a relation:

DROP TABLE <name>;

Elements of table declarations
The most common types are

int or integer (synonyms)
real or float (synonyms)
char(n): fixed-length string of n characters
varchar(n): variable-length string of up to n
characters

Example: create table

create table Sells (
 pub char(20),
 beer varchar(20),
 price real
);

SQL values
Integers and reals are represented as you would expect.

Strings are too, except they require single quotes.

Two single quotes = real quote, e.g., 'Joe''s Bar'.

Any value can be null.

Dates and times
date and time are types in SQL. The form of a date
value is:

'yyyy-mm-dd'

E.g., '2007-09-30'
for September 30, 2007.

Times as values
The form of a time value is

'hh:mm:ss'

with an optional decimal point and fractions of a second
following.

E.g., '15:30:02.5'
meaning two and a half seconds after 3:30pm.

Declaring keys
An attribute, or list (set) of attributes, may be declared as
primary key or unique.

This says that no two tuples in the relation (table) may
agree on all the attributes's values in the key's list.

There are a few distinctions to be mentioned later.

Declaring single-attribute keys
Place primary key or unique after the type in the
declaration of the attribute.

E.g.,

create table Beers (

 name CHAR(20) UNIQUE,

 manf CHAR(20)

);

Declaring multi-attribute keys

A key declaration can also be another element in the
list of elements of a create table statement.

This form is necessary if the key consists of more than
one attribute.

But this form may be used too for one-attribute keys.

Example: multiattribute key
The pub and beer together are the key for Sells.

create table Sells (
 pub char(20),
 beer varchar(20),
 price real,
 primary key (pub, beer)
);

Primary key vs Unique
1. There can be only one primary key for a relation,

but any number of unique declarations.

2. No value of an attribute in the primary key can ever
be null in any tuple.

But values of attributes declared in unique may have
null’s! And there may be several tuples with null.

Caveat: null is a messy concept

DB2 (IBM): any attribute used in a unique declaration
must also be declared not null.

SQL Server (Microsoft): at most one tuple may appear
in the table with a given null pattern wrt s unique
declaration.

PostgresQL: there may be any number of tuples
appearing in the table with null values for attributes
participating in a unique declaration.

A semi-structured data model
Let's present another data model, this one based on
trees.

Motivation

1. a more flexible (?) representation of data

2. able to go “schema-less”, or have as little or as much
“schema” as needed

3. sharing of “documents” among systems and
databases

Graphs of semi-structured data

Nodes = objects.

Labels on arcs (like attribute names).

Atomic values at leaf nodes (nodes with no arcs out).

Flexibility. No restriction on

labels out of a node

number of successors with a given label

Example: Data Graph

XML
XML = Extensible Markup Language.

While HTML uses tags for formatting (e.g., “italic”), XML

uses tags for semantics (e.g., “this is an address”).

Key idea. Create tag sets for a domain (e.g., genomics),

and translate all data into properly tagged XML

documents.

XML documents
Start the document with a declaration, surrounded by <?
xml … ?>. E.g.,

<?xml version = “1.0” encoding = “utf-8” ?>

The balance of document is a root tag surrounding
nested tags.

Tags
Tags, as in HTML, are matched pairs, as <foo>...
</foo>.
Optional single tag <foo/>, which is shorthand for
<foo></foo>.
Tags may be nested arbitrarily.
XML tags are case sensitive.

Example: an XML document
<pubs>
 <pub>
 <name>Joe's Bar</name>
 <beer>
 <mark><name>Bud</name></mark>
 <price>2.50</price>
 </beer>
 <beer>
 <name>Molsons</name>
 <price>3.50</price>
 </beer>
 </pub>
 <pub>...</pub>
 ...
</pubs>

The difference between XML and HTML

XML is not a replacement for HTML.

XML and HTML were designed with different goals:

XML was designed to describe data, with focus on

what data is

HTML was designed to display data, with focus on

how data looks

HTML is about displaying information, while XML is

about carrying information.

Attributes
Like HTML, the opening tag in XML can have

attribute = value pairs.

Attributes also allow linking among elements (discussed

later).

DTD
A grammatical notation for describing allowed use of
tags.

Definition form:

<!DOCTYPE <root tag> [

 <!ELEMENT <name>(<components>)>

 . . . more elements . . .

]>

DTD: Attributes
Opening tags in XML can have attributes.

In a DTD, <!ATTLIST E . . . > declares an attribute

for element E, along with its datatype.

Database Models | EECS-3421-A: Introduction to Database Systems | Fall 2016

Example: DTD

<!DOCTYPE BARS [

 <!ELEMENT BARS (BAR*)>

 <!ELEMENT BAR (NAME, BEER+)>

 <!ELEMENT NAME (#PCDATA)>

 <!ELEMENT BEER (NAME, PRICE)>

 <!ELEMENT PRICE (#PCDATA)>

]>

