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What is Data Warehouse? 

n  Defined in many different ways, but not rigorously. 
n  A decision support database that is maintained 

separately from the organization’s operational 
database 

n  Supports information processing by providing a solid 
platform of consolidated, historical data for analysis. 

n  “A data warehouse is a subject-oriented, integrated, 
time-variant, and nonvolatile collection of data in support 
of management’s decision-making process.”—W. H. 
Inmon 

n  Data warehousing: 
n  The process of constructing and using data 

warehouses 
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Data Warehouse—Subject-Oriented 

n  Organized around major subjects, such as customer, 
product, sales. 

n  Focusing on the modeling and analysis of data for 

decision makers, not on daily operations or transaction 
processing. 

n  Provide a simple and concise view around particular 

subject issues by excluding data that are not useful in 
the decision support process. 
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Data Warehouse—Integrated 

n  Constructed by integrating multiple, heterogeneous 
data sources 
n  relational databases, flat files, on-line transaction 

records 
n  Data cleaning and data integration techniques are 

applied. 
n  Ensure consistency in naming conventions, encoding 

structures, attribute measures, etc. among different 
data sources 

n  E.g., Hotel price: currency, tax, breakfast covered, etc. 
n  When data is moved to the warehouse, it is 

converted.   
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Data Warehouse—Time Variant 

n  The time horizon for the data warehouse is significantly 
longer than that of operational systems. 

n  Operational database: current value data. 

n  Data warehouse data: provide information from a 
historical perspective (e.g., past 5-10 years) 

n  Every key structure in the data warehouse 

n  Contains an element of time, explicitly or implicitly 

n  But the key of operational data may or may not 
contain “time element”. 
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Data Warehouse—Non-Volatile 

n  A physically separate store of data transformed from the 
operational environment. 

n  Operational update of data does not occur in the data 

warehouse environment. 

n  Does not require transaction processing, recovery, 
and concurrency control mechanisms 

n  Requires only two operations in data accessing:  

n  initial loading of data and access of data. 
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Data Warehouse vs. Heterogeneous DBMS 

n  Traditional heterogeneous DB integration:  
n  Build wrappers/mediators on top of heterogeneous databases  
n  Query driven approach 

n  When a query is posed to a client site, a meta-dictionary is 
used to translate the query into queries appropriate for 
individual heterogeneous sites involved, and the results are 
integrated into a global answer set 

n  Data warehouse: update-driven, high performance 
n  Information from heterogeneous sources is integrated in advance 

and stored in warehouses for direct query and analysis 
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Data Warehouse vs. Operational DBMS 

n  OLTP (on-line transaction processing) 
n  Major task of traditional relational DBMS 
n  Day-to-day operations: purchasing, inventory, banking, 

manufacturing, payroll, registration, accounting, etc. 

n  OLAP (on-line analytical processing) 
n  Major task of data warehouse system 
n  Data analysis and decision making 

n  Distinct features (OLTP vs. OLAP): 
n  User and system orientation: customer vs. market 

n  Data contents: current, detailed vs. historical, consolidated 
n  Database design: ER + application vs. star + subject 
n  View: current, local vs. evolutionary, integrated 
n  Access patterns: update vs. read-only but complex queries 
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OLTP vs. OLAP 

 OLTP OLAP 
users clerk, IT professional knowledge worker 
function day to day operations decision support 
DB design application-oriented subject-oriented 
data current, up-to-date 

detailed, flat relational 
isolated 

historical,  
summarized, multidimensional 
integrated, consolidated 

usage repetitive ad-hoc 
access read/write 

index/hash on prim. key 
lots of scans 

unit of work short, simple transaction complex query 
# records accessed tens millions 
#users thousands hundreds 
DB size 100MB-GB 100GB-TB 
metric transaction throughput query throughput, response 
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Why Separate Data Warehouse? 

n  High performance for both systems 
n  DBMS— tuned for OLTP: access methods, indexing, 

concurrency control, recovery 
n  Warehouse—tuned for OLAP: complex OLAP queries, 

multidimensional view, consolidation. 
n  Different functions and different data: 

n  missing data: Decision support requires historical data 
which operational DBs do not typically maintain 

n  data consolidation:  DW requires consolidation 
(aggregation, summarization) of data from 
heterogeneous sources 

n  data quality: different sources typically use inconsistent 
data representations, codes and formats which have to 
be reconciled 
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Conceptual Modeling of 
Data Warehouses 

n  Modeling data warehouses: dimensions & measures 

n  Star schema: A fact table in the middle connected to a 
set of dimension tables  

n  Snowflake schema:  A refinement of star schema 
where some dimensional hierarchy is normalized into a 
set of smaller dimension tables, forming a shape 

similar to snowflake 

n  Fact constellations:  Multiple fact tables share 

dimension tables, viewed as a collection of stars, 

therefore called galaxy schema or fact constellation  
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Example of Star Schema 

    time_key 
day 
day_of_the_week 
month 
quarter 
year 

time 

location_key 
street 
city 
province_or_street 
country 

location 

Sales     Fact Table 

           time_key 

              item_key 

           branch_key 

         location_key 

            units_sold 

         dollars_sold 

             avg_sales 
Measures 

item_key 
item_name 
brand 
type 
supplier_type 

item 

branch_key 
branch_name 
branch_type 

branch 
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Example of Snowflake Schema 

time_key 
day 
day_of_the_week 
month 
quarter 
year 

time 

location_key 
street 
city_key 

location 

Sales     Fact Table 

           time_key 

              item_key 

           branch_key 

         location_key 

            units_sold 

         dollars_sold 

             avg_sales 

Measures 

item_key 
item_name 
brand 
type 
supplier_key 

item 

branch_key 
branch_name 
branch_type 

branch 

supplier_key 
supplier_type 

supplier 

city_key 
city 
province_or_street 
country 

city 
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Example of Fact Constellation 

time_key 
day 
day_of_the_week 
month 
quarter 
year 

time 

location_key 
street 
city 
province_or_street 
country 

location 

Sales    Fact Table 

time_key 

         item_key 

      branch_key 

    location_key 

        units_sold 

     dollars_sold 

         avg_sales 
Measures 

item_key 
item_name 
brand 
type 
supplier_type 

item 

branch_key 
branch_name 
branch_type 

branch 

Shipping Fact Table 

time_key 

         item_key 

     shipper_key 

  from_location 

      to_location 

     dollars_cost 

   units_shipped 

shipper_key 
shipper_name 
location_key 
shipper_type 

shipper 
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A Concept Hierarchy: Dimension (location) 

all 

Europe North_America 

Mexico Canada Spain Germany 

Vancouver 

M. Wind L. Chan 

... 

... ... 

... ... 

... 

all 

region 

office 

country 

Toronto Frankfurt city 
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From Tables and Spreadsheets 
to Data Cubes 

n  A data warehouse is based on a multidimensional data model which 
views data in the form of a data cube 

n  A data cube, such as sales, allows data to be modeled and viewed 
in multiple dimensions 

n  Dimension tables, such as item (item_name, brand, type), or 
time(day, week, month, quarter, year)  

n  Fact table contains measures (such as dollars_sold) and keys to 
each of the related dimension tables 

n  In data warehousing literature, an n-D base cube is called a base 
cuboid. The top most 0-D cuboid, which holds the highest-level of 
summarization, is called the apex cuboid.  The lattice of cuboids 
forms a data cube. 
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Multidimensional Data 

n  Sales volume as a function of product, month, 
and region 

Pr
od

uc
t 

Month 

Dimensions: Product, Location, Time 
Hierarchical summarization paths 

Industry   Region         Year 
 
Category   Country  Quarter 
 
Product      City     Month    Week 
 
                   Office         Day 
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A Sample Data Cube 

Total annual sales 
of  TV in U.S.A. Date 

C
ou

nt
ry

 

sum 

sum   
TV 

VCR 
PC 

1Qtr 2Qtr 3Qtr 4Qtr 
U.S.A 

Canada 

Mexico 

sum 
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Cuboids Corresponding to the Cube 

all 

product date country 

product,date product,country date, country 

product, date, country 

0-D(apex) cuboid 

1-D cuboids 

2-D cuboids 

3-D(base) cuboid 
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Typical OLAP Operations 

n  Roll up (drill-up): summarize data 

n  by climbing up hierarchy or by dimension reduction 
n  Drill down (roll down): reverse of roll-up 

n  from higher level summary to lower level summary or detailed 
data, or introducing new dimensions 

n  Slice and dice:  

n  project and select  
n  Pivot (rotate):  

n  aggregation on selected dimensions. 
n  Other operations 

n  drill across: involving (across) more than one fact table 
n  drill through: through the bottom level of the cube to its back-

end relational tables (using SQL) 
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Multi-Tiered Architecture 

Data 
Warehouse 

Extract 
Transform 
Load 
Refresh 

OLAP Engine 

Analysis 
Query 
Reports 
Data mining 

Monitor 
& 

Integrator 
Metadata 

Data Sources Front-End Tools 

Serve 

Data Marts 

Operational  
DBs 

other 
sources 

Data Storage 

OLAP Server 
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Three Data Warehouse Models 

n  Enterprise warehouse 
n  collects all of the information about subjects spanning 

the entire organization 
n  Data Mart 

n  a subset of corporate-wide data that is of value to a 
specific groups of users.  Its scope is confined to 
specific, selected groups, such as marketing data mart 

n  Independent vs. dependent (directly from warehouse) data mart 

n  Virtual warehouse 
n  A set of views over operational databases 
n  Only some of the possible summary views may be 

materialized 
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OLAP Server Architectures 

n  Relational OLAP (ROLAP)  
n  Use relational or extended-relational DBMS to store and manage 

warehouse data and OLAP middle ware to support missing pieces 
n  Include optimization of DBMS backend, implementation of 

aggregation navigation logic, and additional tools and services 
n  Greater scalability 

n  Multidimensional OLAP (MOLAP)  
n  Array-based multidimensional storage engine (sparse matrix 

techniques) 
n  Fast indexing to pre-computed summarized data 

n  Hybrid OLAP (HOLAP) 
n  User flexibility, e.g.,  low level: relational, high-level: array 

n  Specialized SQL servers 
n  Specialized support for SQL queries over star/snowflake schemas 
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Efficient Data Cube Computation 

n  Data cube can be viewed as a lattice of cuboids   
n  The bottom-most cuboid is the base cuboid 

n  The top-most cuboid (apex) contains only one cell 
n  How many cuboids in an n-dimensional cube? 

 
 n2
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Problem: How to Implement Data 
Cube Efficiently? 

n  Physically materialize the whole data cube 
n  Space consuming in storage and time consuming in construction 
n  Indexing overhead 

n  Materialize nothing 
n  No extra space needed but unacceptable response time 

n  Materialize only part of the data cube 
n  Intuition: precompute frequently-asked queries? 
n  However: each cell of data cube is an aggregation, the value of 

many cells are dependent on the values of other cells in the 
data cube 

n  A better approach: materialize queries which can help answer 
many other queries quickly 
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Motivating example 

n  Assume the data cube: 
n  Stored in a relational DB (MDDB is not very scalable) 
n  Different cuboids are assigned to different tables 
n  The cost of answering a query is proportional to the 

number of rows examined 
n  Use TPC-D decision-support benchmark 

n  Attributes: part, supplier, and customer 
n  Measure: total sales 
n  3-D data cube: cell (p, s ,c) 
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Motivating example (cont.) 

n  Hypercube lattice: the eight views (cuboids)  constructed 
by grouping on some of part, supplier, and customer 

Finding total sales grouped by part 
n Processing 6 million rows if cuboid pc is 
materialized  

n Processing 0.2 million rows if cuboid p is 
materialized 

n Processing 0.8 million rows if cuboid ps is 
materialized 
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Motivating example (cont.) 

How to find a good set of queries?  
n  How many views must be materialized to get 

reasonable performance? 
n  Given space S, what views should be 

materialized to get the minimal average query 
cost? 

n  If we are willing to tolerate an X% degradation 
in average query cost from a fully materialized 
data cube, how much space can we save over 
the fully materialized data cube? 
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Dependence relation 

The dependence relation on queries: 
n  Q1 _ Q2 iff Q1 can be answered using only the results 

of query Q2 (Q1 is dependent on Q2). 
 In which 

n  _ is a partial order, and 
n  There is a top element, a view upon which is 

dependent (base cuboid) 
n  Example:  

n  (part) _ (part, customer) 
n  (part) _ (customer) and (customer) _ (part)  

≺

≺
≺ ≺

≺
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The linear cost model 

n  For <L, _>,  Q _ QA,  C(Q) is the number of rows in the 
table for that query QA used to compute Q 
n  This linear relationship can be expressed as: 

    T = m * S + c   
(m: time/size ratio; c: query overhead; S: size of the view) 
n  Validation of the model using TPC-D data: 

≺ ≺
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The benefit of a materialized view 

n  Denote the benefit of a materialized view v, relative to 
some set of views S, as B(v, S) 

n  For each w _ v, define BW by: 
n  Let C(v) be the cost of view v 
n  Let u be the view of least cost in S such that w _ u 

(such u must exist) 
n  BW = C(u) – C(v)  if C(v) < C(u) 

             = 0    if C(v) ≥ C(u) 
n  BW is the benefit that it can obtain from v 

n  Define B(v, S) = Σ w < v Bw which means how v can 
improve the cost of evaluating views, including itself 

≺

≺
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The greedy algorithm 

n  Objective  
n  Assume materializing a fixed number of views, regardless of 

the space they use  
n  How to minimize the average time taken to evaluate a view? 

n  The greedy algorithm for materializing a set of k views 

n  Performance: Greedy/Optimal ≥ 1 – (1 – 1/k) k ≥ (e - 1) / e 
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Greedy algorithm: example 1 
n  Suppose we want to choose three views (k = 3) 

n  The selection is optimal (reduce cost from 800 to 420) 
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Greedy algorithm: example 2 
n  Suppose k = 2 

n  Greedy algorithm picks c and b: benefit = 101*41+100*21 = 6241 
n  Optimal selection is b and d: benefit = 100*41+100*41 = 8200 
n  However, greedy/optimal = 6241/8200 > 3/4 
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An experiment: how many views 
should be materialized? 

n  Time and space for the greedy selection for the TPC-D-
based example (full materialization is not efficient) 

Number of materialized views 
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Indexing OLAP Data: Bitmap Index 

n  Index on a particular column 
n  Each value in the column has a bit vector: bit-op is fast 
n  The length of the bit vector: # of records in the base table 
n  The  i-th bit is set if the  i-th row of the base table has the value 

for the indexed column 
n  not suitable for high cardinality domains 

Cust Region Type
C1 Asia Retail
C2 Europe Dealer
C3 Asia Dealer
C4 America Retail
C5 Europe Dealer

RecID Retail Dealer
1 1 0
2 0 1
3 0 1
4 1 0
5 0 1

RecIDAsia Europe America
1 1 0 0
2 0 1 0
3 1 0 0
4 0 0 1
5 0 1 0

Base table Index on Region Index on Type 
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Indexing OLAP Data: Join Indices 

n  Join index: JI(R-id, S-id) where R (R-id, …) ▹◃ S 
(S-id, …) 

n  Traditional indices map the values to a list of 
record ids 
n  It materializes relational join in JI file and 

speeds up relational join — a rather costly 
operation 

n  In data warehouses, join index relates the values 
of the dimensions of a start schema to rows in 
the fact table. 
n  E.g. fact table: Sales and two dimensions city 

and product 
n  A join index on city maintains for each 

distinct city a list of R-IDs of the tuples 
recording the Sales in the city  

n  Join indices can span multiple dimensions 
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Summary 

n  Data warehouse  
n  A subject-oriented, integrated, time-variant, and nonvolatile collection of 

data in support of management’s decision-making process 

n  A multi-dimensional model of a data warehouse 
n  Star schema, snowflake schema, fact constellations 
n  A data cube consists of dimensions & measures 

n  OLAP operations: drilling, rolling, slicing, dicing and pivoting 
n  OLAP servers: ROLAP, MOLAP, HOLAP 
n  Efficient computation of data cubes 

n  Partial vs. full vs. no materialization 
n  Multiway array aggregation 
n  Bitmap index and join index implementations 

n  Further development of data cube technology 
n  Discovery-drive and multi-feature cubes 
n  From OLAP to OLAM (on-line analytical mining) 


