

#### Data Warehousing and Decision Support

Chapter 25

#### What is Data Warehouse?

- Defined in many different ways, but not rigorously.
  - A decision support database that is maintained separately from the organization's operational database
  - Supports information processing by providing a solid platform of consolidated, historical data for analysis.
- "A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process."—W. H. Inmon
- Data warehousing:
  - The process of constructing and using data warehouses

## Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales.
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing.
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process.

#### Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
  - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
  - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
    - E.g., Hotel price: currency, tax, breakfast covered, etc.
  - When data is moved to the warehouse, it is converted.

#### Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems.
  - Operational database: current value data.
  - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
  - Contains an element of time, explicitly or implicitly
  - But the key of operational data may or may not contain "time element".

#### Data Warehouse—Non-Volatile

- A physically separate store of data transformed from the operational environment.
- Operational update of data does not occur in the data warehouse environment.
  - Does not require transaction processing, recovery, and concurrency control mechanisms
  - Requires only two operations in data accessing:
    - initial loading of data and access of data.

#### Data Warehouse vs. Heterogeneous DBMS

- Traditional heterogeneous DB integration:
  - Build wrappers/mediators on top of heterogeneous databases
  - Query driven approach
    - When a query is posed to a client site, a meta-dictionary is used to translate the query into queries appropriate for individual heterogeneous sites involved, and the results are integrated into a global answer set
- Data warehouse: update-driven, high performance
  - Information from heterogeneous sources is integrated in advance and stored in warehouses for direct query and analysis

#### Data Warehouse vs. Operational DBMS

- OLTP (on-line transaction processing)
  - Major task of traditional relational DBMS
  - Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc.
- OLAP (on-line analytical processing)
  - Major task of data warehouse system
  - Data analysis and decision making
- Distinct features (OLTP vs. OLAP):
  - User and system orientation: customer vs. market
  - Data contents: current, detailed vs. historical, consolidated
  - Database design: ER + application vs. star + subject
  - View: current, local vs. evolutionary, integrated

Access patterns: update vs. read-only but complex queries
 November 30, 2016

## OLTP vs. OLAP

|                    | ΟΙ ΤΡ                     |                              |  |  |  |
|--------------------|---------------------------|------------------------------|--|--|--|
|                    | OLII                      | ULAI                         |  |  |  |
| users              | clerk, IT professional    | knowledge worker             |  |  |  |
| function           | day to day operations     | decision support             |  |  |  |
| DB design          | application-oriented      | subject-oriented             |  |  |  |
| data               | current, up-to-date       | historical,                  |  |  |  |
|                    | detailed, flat relational | summarized, multidimensional |  |  |  |
|                    | isolated                  | integrated, consolidated     |  |  |  |
| usage              | repetitive                | ad-hoc                       |  |  |  |
| access             | read/write lots of scans  |                              |  |  |  |
|                    | index/hash on prim. key   |                              |  |  |  |
| unit of work       | short, simple transaction | complex query                |  |  |  |
| # records accessed | tens                      | millions                     |  |  |  |
| #users             | thousands                 | hundreds                     |  |  |  |
| DB size            | 100MB-GB                  | 100GB-TB                     |  |  |  |
| metric             | transaction throughput    | query throughput, response   |  |  |  |

## Why Separate Data Warehouse?

#### High performance for both systems

- DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery
- Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation.
- Different functions and different data:
  - <u>missing data</u>: Decision support requires historical data which operational DBs do not typically maintain
  - <u>data consolidation</u>: DW requires consolidation (aggregation, summarization) of data from heterogeneous sources
  - <u>data quality</u>: different sources typically use inconsistent data representations, codes and formats which have to be reconciled

## Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
  - <u>Star schema</u>: A fact table in the middle connected to a set of dimension tables
  - <u>Snowflake schema</u>: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
  - Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars,

therefore called galaxy schema or fact constellation



#### Example of Snowflake Schema





November 30, 2016



# From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
  - Dimension tables, such as item (item\_name, brand, type), or time(day, week, month, quarter, year)
  - Fact table contains measures (such as dollars\_sold) and keys to each of the related dimension tables
- In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

#### **Multidimensional Data**

 Sales volume as a function of product, month, and region



**Dimensions: Product, Location, Time Hierarchical summarization paths** 





Cuboids Corresponding to the Cube



#### **Typical OLAP Operations**

- Roll up (drill-up): summarize data
  - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
  - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice:
  - project and select
- Pivot (rotate):
  - aggregation on selected dimensions.
- Other operations
  - drill across: involving (across) more than one fact table
  - *drill through:* through the bottom level of the cube to its backend relational tables (using SQL)



#### Three Data Warehouse Models

#### Enterprise warehouse

- collects all of the information about subjects spanning the entire organization
- Data Mart
  - a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
    - Independent vs. dependent (directly from warehouse) data mart
- Virtual warehouse
  - A set of views over operational databases
  - Only some of the possible summary views may be materialized

#### **OLAP Server Architectures**

#### Relational OLAP (ROLAP)

- Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middle ware to support missing pieces
- Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
- Greater scalability
- Multidimensional OLAP (MOLAP)
  - Array-based multidimensional storage engine (sparse matrix techniques)
  - Fast indexing to pre-computed summarized data
- Hybrid OLAP (HOLAP)
  - User flexibility, e.g., low level: relational, high-level: array
- Specialized SQL servers
  - Specialized support for SQL queries over star/snowflake schemas



- Data cube can be viewed as a lattice of cuboids
  - The bottom-most cuboid is the base cuboid
  - The top-most cuboid (apex) contains only one cell
  - How many cuboids in an n-dimensional cube?

## Problem: How to Implement Data Cube Efficiently?

- Physically materialize the whole data cube
  - Space consuming in storage and time consuming in construction
  - Indexing overhead
- Materialize nothing
  - No extra space needed but unacceptable response time
- Materialize only part of the data cube
  - Intuition: precompute frequently-asked queries?
  - However: each cell of data cube is an aggregation, the value of many cells are dependent on the values of other cells in the data cube
  - A better approach: materialize queries which can help answer many other queries quickly



- Assume the data cube:
  - Stored in a relational DB (MDDB is not very scalable)
  - Different cuboids are assigned to different tables
  - The cost of answering a query is proportional to the number of rows examined
- Use TPC-D decision-support benchmark
  - Attributes: *part, supplier,* and *customer*
  - Measure: total sales
  - 3-D data cube: cell (*p*, *s*,*c*)



Hypercube lattice: the eight views (cuboids) constructed by grouping on some of *part*, *supplier*, and *customer* 



none 1

Finding total *sales* grouped by *part* 

Processing 6 million rows if cuboid pc is materialized

Processing 0.2 million rows if cuboid p is materialized

Processing 0.8 million rows if cuboid ps is materialized

## Motivating example (cont.)

#### How to find a good set of queries?

- How many views must be materialized to get reasonable performance?
- Given space S, what views should be materialized to get the minimal average query cost?
- If we are willing to tolerate an X% degradation in average query cost from a fully materialized data cube, how much space can we save over the fully materialized data cube?



The dependence relation on queries:

- Q1 ≤ Q2 iff Q1 can be answered using only the results of query Q2 (Q1 is dependent on Q2).
   In which
  - $\leq$  is a partial order, and
  - There is a top element, a view upon which is dependent (base cuboid)
- Example:
  - (part) ≤ (part, customer)
  - (*part*)  $\neq$  (*customer*) and (*customer*)  $\neq$  (*part*)

#### The linear cost model

- For <L,  $\leq$ >, Q  $\leq$  Q<sub>A</sub>, C(Q) is the number of rows in the table for that query Q<sub>A</sub> used to compute Q
  - This linear relationship can be expressed as:

T = m \* S + c

(m: time/size ratio; c: query overhead; S: size of the view)

Validation of the model using TPC-D data:

| Source                               | Size      | Time (sec.) | Ratio          |
|--------------------------------------|-----------|-------------|----------------|
| From cell itself                     | 1         | 2.07        | not applicable |
| From view (supplier)                 | 10,000    | 2.38        | .000031        |
| From view (part, supplier)           | 800,000   | 20.77       | .000023        |
| From view (part, supplier, customer) | 6,000,000 | 226.23      | .000037        |

Growth of query response time with size of view

## The benefit of a materialized view

- Denote the benefit of a materialized view v, relative to some set of views S, as B(v, S)
- For each  $w \leq v$ , define  $B_W$  by:
  - Let C(v) be the cost of view v
  - Let u be the view of least cost in S such that w ≤ u (such u must exist)
  - $B_W = C(u) C(v) \quad \text{if } C(v) < C(u)$  $= 0 \quad \text{if } C(v) \ge C(u)$
  - $B_W$  is the benefit that it can obtain from v
- Define  $B(v, S) = \sum_{w \le v} B_w$  which means how v can improve the cost of evaluating views, including itself



- Objective
  - Assume materializing a fixed number of views, regardless of the space they use
  - How to minimize the average time taken to evaluate a view?
- The greedy algorithm for materializing a set of k views

```
S = {top view};
for i=1 to k do begin
    select that view v not in S such that B(v,S) is maximized;
    S = S union {v};
end;
resulting S is the greedy selection;
```

Performance: Greedy/Optimal  $\geq$  1 – (1 – 1/k) <sup>k</sup>  $\geq$  (e - 1) / e

#### Greedy algorithm: example 1

#### Suppose we want to choose three views (k = 3)



Example lattice with space costs

#### The selection is optimal (reduce cost from 800 to 420)

#### Greedy algorithm: example 2

- Suppose k = 2
  - Greedy algorithm picks c and b: benefit = 101\*41+100\*21 = 6241
  - Optimal selection is b and d: benefit = 100\*41+100\*41 = 8200
  - However, greedy/optimal = 6241/8200 > 3/4



A lattice where the greedy algorithm does poorly

# An experiment: how many views should be materialized?

Time and space for the greedy selection for the TPC-Dbased example (full materialization is not efficient)

80M



Greedy order of view selection for TPC-D-based example

## Indexing OLAP Data: Bitmap Index

- Index on a particular column
- Each value in the column has a bit vector: bit-op is fast
- The length of the bit vector: # of records in the base table
- The *i*-th bit is set if the *i*-th row of the base table has the value for the indexed column
- not suitable for high cardinality domains

| Base table |         | Index on Region |       | Index on Type |        |                |       |               |               |
|------------|---------|-----------------|-------|---------------|--------|----------------|-------|---------------|---------------|
| Cust       | Region  | Туре            | RecID | <b>Asia</b>   | Europe | <b>America</b> | RecID | <b>Retail</b> | <b>Dealer</b> |
| C1         | Asia    | Retail          | 1     | 1             | 0      | 0              | 1     | 1             | 0             |
| C2         | Europe  | Dealer          | 2     | 0             | 1      | 0              | 2     | 0             | 1             |
| C3         | Asia    | Dealer          | 3     | 1             | 0      | 0              | 3     | 0             | 1             |
| C4         | America | Retail          | 4     | 0             | 0      | 1              | 4     | 1             | 0             |
| C5         | Europe  | Dealer          | 5     | 0             | 1      | 0              | 5     | 0             | 1             |

#### Indexing OLAP Data: Join Indices

- Join index: JI(R-id, S-id) where R (R-id, ...) ▷⊲ S (S-id, ...)
- Traditional indices map the values to a list of record ids
  - It materializes relational join in JI file and speeds up relational join — a rather costly operation
- In data warehouses, join index relates the values of the <u>dimensions</u> of a start schema to <u>rows</u> in the fact table.
  - E.g. fact table: *Sales* and two dimensions *city* and *product* 
    - A join index on *city* maintains for each distinct city a list of R-IDs of the tuples recording the Sales in the city
  - Join indices can span multiple dimensions





#### Data warehouse

- A <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process
- A multi-dimensional model of a data warehouse
  - Star schema, snowflake schema, fact constellations
  - A data cube consists of dimensions & measures
- OLAP operations: drilling, rolling, slicing, dicing and pivoting
- OLAP servers: ROLAP, MOLAP, HOLAP
- Efficient computation of data cubes
  - Partial vs. full vs. no materialization
  - Multiway array aggregation
  - Bitmap index and join index implementations
- Further development of data cube technology
  - Discovery-drive and multi-feature cubes
  - From OLAP to OLAM (on-line analytical mining)