

- · Extortion
- .
 . Bussiness competition
- . Hacktivism
- . Script kiddies
- . Security Feints
- · Internal Testing

Consequences

- Disable a specific computer, service, or entire network
- Hit system resources like bandwidth, disk space, processor time, or routing information
- · Crash the operating system
- Loss of revenue, brand damage, and angry customers

Questions and Answers

1. No higher a nown or a garant models of freedomat person international proviliables closes the operational structure for Societies leads Ming? or him say a passion of Secret Maries or

How long do most EDeS attacks last for?

Multiple systems target a single system to take down a service, compromising availability

These multiple systems are referred to a bottost

DDoS Attacks & Botnet

CSE3482
By: Yang Liu, Harshilkumar
Patel, Melissa Soon

- · Extortion
- .
 . Bussiness competition
- . Hacktivism
- . Script kiddies
- . Security Feints
- · Internal Testing

Consequences

- Disable a specific computer, service, or entire network
- Hit system resources like bandwidth, disk space, processor time, or routing information
- · Crash the operating system
- Loss of revenue, brand damage, and angry customers

Questions and Answers

1. No higher a nown or a garant models of freedomat person international proviliables closes the operational structure for Societies leads Ming? or him say a passion of Secret Maries or

How long do most EDeS attacks last for?

Multiple systems target a single system to take down a service, compromising availability

These multiple systems are referred to a bottost

DDoS Attacks & Botnet

CSE3482
By: Yang Liu, Harshilkumar
Patel, Melissa Soon

DDoS = Distributed denial of service

- Multiple systems target a single system to take down a service, compromising availability
- These multiple systems are referred to a botnet

Visualization of DDos attack on World of Warcraft servers at Blizzard

Issues

- DDoS attacks cannot be stopped by preventing access to a single IP address
- Difficult to distinguish normal user traffic from the attacking traffic
- DDoS prevents intended users from accessing the network

Purpose

- Extortion
- Bussiness competition
- . Hacktivism
- Script kiddies
- · Security Feints
- Internal Testing

Consequences

- Disable a specific computer, service, or entire network
- Hit system resources like bandwidth, disk space, processor time, or routing information
- Crash the operating system
- Loss of revenue, brand damage, and angry customers

Purpose

- Extortion
- •
- Bussiness competition
- •
- Hacktivism
- •
- Script kiddies
- •
- Security Feints
- •
- · Internal Testing

- · Disable a entire ne
- · Hit syster disk space informatie
- · Crash the
- · Loss of rev

Consequences

- Disable a specific computer, service, or entire network
- Hit system resources like bandwidth, disk space, processor time, or routing information
- Crash the operating system
- Loss of revenue, brand damage, and angry customers

Types of Attacks

- Protocol attacks
 – Use up all available connections to infrastructure
- Volumetric attacks Consume the bandwidth causing congestion
- Application attacks The application layer is targetted

- Target the connection state tables in infrastructure such as the firewall, load-balancers and web application servers
- · Account for 20% of reported DDoS attacks in 2014
- Example: Ping of death -

- · 17% of DDoS attacks · Over-exercises specific functions or features of a website with the intention to disable those functions or features
- · Examples: HTTP flood

Q2 2015 DDoS analysis

Types of attacks: Volumetric attacks

- · Also known as floods
- Account for 65% of DDoS attacks
- Causes congestion by sending lots of traffic which overwhelm the sites bandwidth
- Example: ICMP floods

Types of Attacks: Application-layer

- 17% of DDoS attacks
- Over-exercises specific functions or features of a website with the intention to disable those functions or features
- Examples: HTTP flood

Types of attacks: Protocol

- Target the connection state tables in infrastructure such as the firewall, load-balancers and web application servers
- Account for 20% of reported DDoS attacks in 2014
- Example: Ping of death –

otnet?

What does

A botnet can perfo

machines trying

What is a Botnet?

- ► A network of similar machines trying to complete repetitive tasks and objectives
 - Devices include: web servers, personal or work computer, mobile devices, or cable modems

What does a Botnet do

- A botnet can perform tasks such as:
 - Scanning for new targets
 - Exfiltrating data
 - Distributing malicious software (Malware such overuses, worms, and keyloggers)
 - Stealing personal information or intellectual pro
 - ► Attacking other targets (DDoS attacks)

What is a Botnet?

- A network of similar machines trying to complete repetitive tasks and objectives
- Devices include: web servers, personal or work computer, mobile devices, or cable modems

Wh

- -A boti
 - Scani
 - ► Exfiltro
- Distribu viruses,
- ► Stealing
- Attackir

What does a Botnet do?

- A botnet can perform tasks such as:
 - Scanning for new targets
 - Exfiltrating data
 - Distributing malicious software (Malware such as viruses, worms, and keyloggers)
 - Stealing personal information or intellectual property
 - Attacking other targets (DDoS attacks)

How does a Botnet Work?

■ The Slaves

- Mostly victim machines that are infected with malware
- slave machines could be from individuals or organizations

How does a Botnet Work?

The Masters

- Work through Command and Control servers (C2s) and serve as the brains of the operation
- C2s issue instructions of the slave machines to perform tasks such as a DDoS attack
- Structure: single, multiple, or hierarchical C2s controlling the botnet

Who are the Slave

- The botnet zombie army is mostly consisted of infected co
- The top five countries with the highest absolute unique IP communicating with C2s are

- - and unlarge-victim IP addresses

Who are the Slaves?

- The botnet zombie army is mostly consisted of infected computers
- The top five countries with the highest absolute unique IP victims communicating with C2s are
 - ► China 532,000 unique-victim IP addresses
 - United States 528,000 unique-victim IP addresses
 - Norway 213,000 unique-victim IP addresses
 - Spain –129,000 unique-victim IP addresses
 - Ukraine 124,000 unique-victim IP addresses

How Big is a Botnet?

The average number of infected hosts per C2 is 1700

How Big is a Botnet?

The number of monitored C2 servers is between 1200 and 1450

There are millions of infected hosts worldwide!

- lucrative business with simple setup.
- Operational costs to create, maintain and move a botnet are low
- Blocked botnets can come back online often within hours of being shut down.
- Botnet as a for-hire business:
 - ■USD\$190/month for access to 1000 unique servers

Mitigating Risk of Botnets

- Track data and communication statistics of a C2 and its botnet
- Drive down the length of time C2s survive on the internet
 - The current average age of a C2 is 38 days
- Use multi-layered defense with network controls, robust scrubbing capacity, and threat intelligence

Botnet-for-Hire

Figure 8: Example of botnet-for-hire advertised prices and capacities

Q2 2015 DDoS analysis

- DDoS: Distributed Denial of Service
- Lost business opportunities, loss of consumer trust, data theft, intellectual property loss, significant financial losses (\$40,000 per hour), etc

Network Layer Attacks	Application Layer attacks
Target network and transport layers (3 and 4)	Target layer 7
Assaults that use much of the available bandwidth resources	Overbear server's processing resource with a high number of requests
Gbps (gigabits per second)	RPS (requests per second)

Network Layer Attacks

Attack Duration

Network layer DDoS Attack (by duration)

Figure 2: Distribution of network layer DDoS attacks, by duration

Single and Multi-Vector DDoS Attacks (by duration)

Figure 3: Distribution of single and multi-vector DDoS attacks, by duration

Attack Vectors

Figure 4: Distribution of DDoS attack vectors, by commonness

Network Layer DDoS Attack Vectors (by peak attack volume)

Figure 5: Distribution of DDoS attack vectors, by peak attack volume

Multi-Vector Attacks

Figure 6: Distribution of single-vector vs. multi-vector attacks, compared to 2014

Application Layer Attacks

Attack Duration and Frequency

Distribution of Application Layer DDoS Attacks (by duration)

Figure 10: Distribution of application layer DDoS attacks, by duration

Distribution of Application Layer Attacks (by frequency of assault against a target)

Figure 11: Distribution of application layer attacks, by frequency of assault against a target

Botnet Activity and Geolocation

Distribution of Application Layer Attacks (by request count)

Figure 12: Distribution of application layer attacks, by request count

Application Layer Attack Requests (by DDoS malware type)

Application Layer Attacking IPs (by DDoS malware type)

Figure 13: Distribution of application layer attack requests, by DDoS malware type

Figure 14: Distribution of application layer attacking IPs, by DDoS malware type

Questions and Answers

What is the main goal of DDoS Attacks?

> To render a server or a system unable to function and service its intended users

What does the command structure for botnets look like?

> From top to bottom: Botnet Master -> Command and Control servers -> Zombie Bots

How long do most DDoS attacks last for?

> Over half of all DDoS attacks last 30 minutes or less

ed by IP

al user offic rs from

- · Extortion
- .
 . Bussiness competition
- . Hacktivism
- . Script kiddies
- . Security Feints
- · Internal Testing

Consequences

- Disable a specific computer, service, or entire network
- Hit system resources like bandwidth, disk space, processor time, or routing information
- · Crash the operating system
- Loss of revenue, brand damage, and angry customers

Questions and Answers

1. No higher a notice or a purple models of the control and arrive characteristics.

When claims the committee of structure for floorants look \$60,77 or 700 to a committee of the committee or 700 to a committee or 700 to

How long do most EDeS attacks lost for?

Multiple systems target a single system to take down a service, compromising availability
 These multiple systems are referred to a hotor.

DDoS Attacks & Botnet

CSE3482
By: Yang Liu, Harshilkumar
Patel, Melissa Soon