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Semantic Data Access and Integration: a challenge in IT

Information systems of organizations are typically constituted by several,
distributed, heterogeneous data sources: ⇒ integrating such information
is one of the major challenge in IT

From [Bernstein & Haas, CACM Sept. 2008]:

Large enterprises spend a great deal of time and money on
information integration (e.g., 40% of information-technology shops’
budget).
Market for data integration software estimated to grow from $2.5
billion in 2007 to $3.8 billion in 2012 (+8.7% per year)
[IDC. Worldwide Data Integration and Access Software 2008-2012
Forecast. Doc No. 211636 (Apr. 2008)]

Integration is mainly done by humans: current automated tools are largely
unsatisfactory.
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Semantic Data Access and Integration: a challenge in IT

Desiderata: achieve logical transparency in access to data:

Hide to the user where and how data are stored.

Present to the user a conceptual view of the data.

Use a semantically rich formalism for the conceptual view.

Ontologies can play a key role!
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Ontologies

Definition

An ontology is a representation scheme that describes a formal
conceptualization of a domain of interest.

The specification of an ontology comprises several levels, and in
particular:

Intensional level: specifies a set of conceptual elements and of
rules to describe the conceptual structures of the domain.

Extensional level: specifies a set of instances of the conceptual
elements described at the intensional level.
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Ontology-based data access:
conceptual layer & data layer

Ontology-based data access is based on the idea of decoupling information
access from data storage.

ontology-based data integration

sources

q

sources
sources

ontology

conceptual layer

data layer

Clients access only the conceptual layer ... while the data layer, hidden to
clients, manages the data.
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Intensional level of an ontology language

Ontology languages for the intensional level:
Usually include

Concepts/Classes
e.g., Professor, College

Properties of concepts
e.g., name, age

Relationships between
concepts
e.g., worksFor

Properties of relationships
e.g., since

Constraints
e.g., Dean v Professor

Often are rendered as a diagram
e.g., Semantic Network (AI),
Entity-Relationship schema (DB),
UML Class Diagram (SE)

name: String
age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 
name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}
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Ontologies and Reasoning

Formally we can see ontologies are logical theories, and several
interpretations may exist that satisfy them (incomplete information)

m7
m6

m5
m3

m4
m2

m1

=

ontology

Reasoning over ontologies amounts to make logical inference over
them

Intensional reasoning: concept/relationship satisfiability,
concept/relationship subsumption, etc.
Ontology reasoning: ontology satisfiability, instance checking, query
answering.
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Ontologies and Description Logics: A Perfect Match

Description Logics are logics specifically designed to represent and
reason on structured knowledge:

The domain is composed of objects and is structured into:

concepts, which correspond to classes, and denote sets of objects

roles, which correspond to (binary) relationships, and denote binary
relations on objects

The knowledge is asserted through so-called assertions, i.e., logical
axioms.

Notice these are exactly the constructs at the base of (the intentional
level of) ontologies!
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One slide (very partial) history of DLs

70’s Semantic Networks, Frame Systems:
[Woods75] “What is a link?”: no clear semantics, reasoning not well understood

80’s Description Logics, Concept Languages, Terminological Languages.
[BrachmanLevesque84]: “expressiveness/complexity tradeoff”
[Patel-Schneider89]: “Classic”

90’s Focus on assertions (TBox):

[Lenzerini89], : Description logic as formalisation of conceptual models: But we need of inverse roles
and cardinality restrictions! Also Alex Borgida DLs+DBs!

[Baader90]: Tableaux for ALC with assertions – EXPTIME-completeness

[Schild91], [DeGiacomo95]: Description logic = Modal Logics for actions (fancy ones: with
inverses, graded modalities, nominals). =⇒ “expressiveness/complexity tradeoff” flatten to
EXPTIME-completeness (except for nominals and inverses).
Interestingly, the correspondence already came out in the ’80 in discussions between Hector Levesque
and Jeff Rosenschein, and as a NP-hardness (in fact EXPTIME-hardness) argument for certain
description languages, but was never published and in fact forgotten by the community.

[Horrocks96]: Optimized tableaux for expressive DLs as ALCQI, later SHIQ

[CalvaneseLenzeriniDeGiacomo98] Conjunctive Queries on DLs are decidable!

2000 Semantic Web: OWL-DL W3C Standard!!! Horrocks and Patel-Schneider manage to stick to
scientific grounds in defining the standard!!!

Current New focus on tractability:

Dresden: EL
Rome: DL-Lite.
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Current applications of Description Logics

DLs have evolved from being used “just” in KR.

Novel applications of DLs:

Databases:

schema design, schema evolution
query optimization
integration of heterogeneous data sources, data warehousing

Conceptual modeling

Foundation for the Semantic Web (variants of OWL correspond to
specific DLs)

· · ·
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Ingredients of a Description Logic

A Description Logic is characterized by:

1 A description language: how to form concepts and roles
Human uMale u ∃hasChild u ∀hasChild.(Doctor t Lawyer)

2 A mechanism to assert intensional knowledge about concepts and
roles (TBox)
T = { Father ≡ Human uMale u ∃hasChild,

HappyFather v Father u ∀hasChild.(Doctor t Lawyer) }

3 A mechanism to assert extensional knowledge about objects
(ABox)
A = { HappyFather(john), hasChild(john, mary) }

4 A set of inference services: how to reason on a given KB
T |= HappyFather v ∃hasChild.(Doctor t Lawyer)
T ∪ A |= (Doctor t Lawyer)(mary)
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Ontologies and data

The best current ontology reasoning systems can deal with a
moderately large instance level. ; 104 individuals (and this is a big
achievement of the last years)!

But data of interests in typical information systems (and in data
integration) are much larger
; 106 − 109 individuals

The best technology to deal with large amounts of data are
relational databases.

Question:

How can we use ontologies together with large amounts of data?
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Challenges when integrating data into ontologies

Deal with well-known tradeoff between expressive power of the ontology
language and complexity of dealing with (i.e., performing inference over)
ontologies in that language.

Requirements come from the specific setting:

We have to fully take into account the ontology.
; inference

We have to deal very large amounts of data.
; relational databases

We want flexibility in querying the data.
; expressive query language

We want to keep the data in the sources, and not move it around.
; map data sources to the ontology (Virtual Data Integration)
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Questions to be addressed

1 Which is the “right” ontology language?

2 Which is the “right” query language?

3 How can we bridge the semantic mismatch between the ontology
and the data sources?

4 How can tools for ontology-based data access and integration
fully take into account all these issues?
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Ontology languages vs. query languages

Which query language to use?

Two extreme cases:

1 Just classes and properties of the ontology ; instance checking

Ontology languages are tailored for capturing intensional
relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the
ontology, i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, first-order logic)

Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

A good compromise are (unions of) conjunctive queries.
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Conjunctive queries (CQs)

A conjunctive query (CQ) is a first-order query of the form

q(~x)← ∃~y.R1(~x, ~y) ∧ · · · ∧Rk(~x, ~y)

where each Ri(~x, ~y) is an atom using (some of) the free variables ~x, the
existentially quantified variables ~y, and possibly constants.

Note:

CQs contain no disjunction, no negation, no universal
quantification.

Correspond to SQL/relational algebra select-project-join (SPJ)
queries – the most frequently asked queries.

They also form the core of SPARQL.
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Example of conjunctive query

Professor v Faculty
AssocProf v Professor

Dean v Professor
AssocProf v ¬Dean

Faculty v ∃age
∃age− v Integer

∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

...

name: String
age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 
name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf ,nd , av) ← ∃f, c, d.
worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf ) ∧ name(d,nd) ∧
age(f, av) ∧ age(d, av)
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Conjunctive queries and SQL – Example

Relational alphabet:
worksFor(fac, coll), isHeadOf(dean, coll), name(p, n), age(p, a)

Query: return name, age, and name of dean of all faculty that have the
same age as their dean.

Expressed in SQL:

SELECT NF.name, AF.age, ND.name
FROM worksFor W, isHeadOf H, name NF, name ND, age AF, age AD
WHERE W.fac = NF.p AND W.fac = AF.p AND

H.dean = ND.p AND H.dean = AD.p AND
W.coll = H.coll AND AF.a = AD.a

Expressed as a CQ:

q(nf , af ,nd) ← worksFor(f1 , c1 ), isHeadOf(d1 , c2 ),
name(f2 ,nf ), name(d2 ,nd), age(f3 , af ), age(d3 , ad),
f1 = f2 , f1 = f3 , d1 = d2 , d1 = d3 , c1 = c2 , af = ad
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Query answering under different assumptions

There are fundamentally different assumptions when addressing query
answering in different settings:

traditional database assumption

knowledge representation assumption

Note: for the moment we assume to deal with an ordinary ABox, which
however may be very large and thus is stored in a database.

Giuseppe De Giacomo Ontology-based data access and integration UOT – October 5, 2010 (21/74)



Query answering under the database assumption

Data are completely specified (CWA), and typically large.

Schema/intensional information used in the design phase.

At runtime, the data is assumed to satisfy the schema, and
therefore the schema is not used.

Queries allow for complex navigation paths in the data (cf. SQL).

; Query answering amounts to query evaluation, which is
computationally easy.
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Query answering under the database assumption (cont’d)

Reasoning

ResultQuery

Data
Source

Logical
Schema

Schema /
Ontology
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Query answering under the database assumption – Example

  
Professor

CollegeworksFor
 

Faculty

For each class/property we have a (complete) table in the database.
DB: Faculty = { john, mary, paul }

Professor = { john, paul }
College = { collA, collB }
worksFor = { (john,collA), (mary,collB) }

Query: q(x) ← ∃c. Professor(x), College(c), worksFor(x, c)

Answer: { john }

{
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Query answering under the KR assumption

An ontology imposes constraints on the data.

Actual data may be incomplete or inconsistent w.r.t. such
constraints.

The system has to take into account the constraints during query
answering, and overcome incompleteness or inconsistency.

; Query answering amounts to logical inference, which is
computationally more costly.
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Query answering under the KR assumption (cont’d)

Reasoning

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology
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Query answering under the KR assumption – Example

  
Professor

CollegeworksFor
 

Faculty

The tables in the database may be incompletely specified, or even
missing for some classes/properties.
DB: Professor ⊇ { john, paul }

College ⊇ { collA, collB }
worksFor ⊇ { (john,collA), (mary,collB) }

Query: q(x) ← Faculty(x)

Answer: { john, paul, mary }

{
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Certain answers to a query

Let O = 〈T ,A〉 be an ontology, I an interpretation for O, and
q(~x)← ∃~y. conj (~x, ~y) a CQ.

Def.: The answer to q(~x) over I, denoted qI

. . . is the set of tuples ~c of constants of A such that the formula
∃~y. conj (~c, ~y) evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to q(~x) over O = 〈T ,A〉, denoted
cert(q,O)

. . . are the tuples ~c of constants of A such that ~c ∈ qI , for every
model I of O.
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Data complexity

Various parameters affect the complexity of query answering over an
ontology.

Depending on which parameters we consider, we get different
complexity measures:

Data complexity: only the size of the ABox (i.e., the data)
matters.
TBox and query are considered fixed.

Schema complexity: only the size of the TBox (i.e., the schema)
matters.
ABox and query are considered fixed.

Combined complexity: no parameter is considered fixed.

In the integration setting, the size of the data largely dominates the
size of the conceptual layer (and of the query).
; Data complexity is the relevant complexity measure.
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Complexity of query answering in ontologies

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard(1)

(1) Already for a TBox with a single disjunction!. (2) This is what we need!

Question

Can we find interesting DLs for which the query answering problem can
be solved efficiently (i.e., in LogSpace)?

Can we leverage relational database technology for query answering?

Answer

Yes, but we need new foundations!
No more tableaux coming from logic, but chase coming from databases as
main took for reasoning!
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Inference in query answering

cert(q, 〈T ,A〉)
Logical inference

q

A

T

To be able to deal with data efficiently, we need to separate the
contribution of A from the contribution of q and T .

; Query answering by query rewriting.
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Query rewriting

rewriting
Perfect

(under OWA)
Query

(under CWA)

evaluation

q

T

A cert(q, 〈T ,A〉)

rq,T

Query answering can always be thought as done in two phases:

1 Perfect rewriting: generate a new query rq,T from q and T .

2 Query evaluation: evaluate rq,T over the ABox A seen as a
complete database.
; Produces cert(q, 〈T ,A〉).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .
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Language of the rewriting

The expressiveness of the ontology language affects the query
language into which we are able to rewrite CQs:

When we can rewrite into FOL/SQL.
; Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
; Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
; Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
; Query evaluation requires (at least) power of Disjunctive
Datalog.
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Query rewriting (cont’d)

Reasoning

Rewritten 
Query

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology
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The DL-Lite Family

The DL-Lite family is a family of DL carefully designed to provide
robust foundations for Ontology-Based Data Access: Query answering
for UCQ is:

NP-complete in query complexity – as relational DBs

PTime in the size of the TBox

LogSpace in size of ABox (data complexity) – as relational DBs

queries can be rewritten into FOL/SQL – allows delegating
reasoning on data to a RDMBS!

Inference based on (inverted) chase and not on tableaux!

Here we consider DL-LiteA, which is one of the most powerful
DL-Lite’s.

Giuseppe De Giacomo Ontology-based data access and integration UOT – October 5, 2010 (36/74)



DL-LiteA

ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Domain and range of properties ∃P v A1 ∃P− v A2

Mandatory participation (min card = 1) A1 v ∃P A2 v ∃P−

Functionality of relations (max card = 1) (funct P ) (funct P−)

ISA between properties Q1 v Q2

Disjointness between properties Q1 v ¬Q2

Note: DL-LiteA can be extended to capture also min cardinality
constraints (A v≤ nQ) and max cardinality constraints (A v≥ nQ)
(not considered here for simplicity).
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Example

name: String
age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 
name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

Professor v Faculty
AssocProf v Professor

Dean v Professor
AssocProf v ¬Dean

Faculty v ∃age
∃age− v xsd:integer

(funct age)

∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

∃isHeadOf v Dean
∃isHeadOf− v College

Dean v ∃isHeadOf
College v ∃isHeadOf−

isHeadOf v worksFor
(funct isHeadOf)

(funct isHeadOf−)
...
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DL-LiteA

Essentially, captures all the basic constructs of UML Class
Diagrams and of the ER Model . . .

. . . except covering constraints in generalizations. – if we add
them, query answering becomes coNP-hard in data complexity

A substantial fragment of it, chosen as one one of the three
standard OWL 2 Profiles: OWL 2 QL.

Extends (the DL compatible part of) the ontology language RDFS.

Completely symmetric w.r.t. direct and inverse properties. roles are
always navigable in the two directions

Non trivial, e.g., does not enjoy the finite model property, i.e.,
reasoning and query answering differ depending on whether we
consider or not also infinite models.
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DL-LiteA does not have the finite model property

DL-LiteA does not enjoy the finite model property.

Example

TBox T : Nat v ∃succ ∃succ− v Nat

Zero v Nat Zero v ¬∃succ− (funct succ−)

ABox A: Zero(0)

O = 〈T ,A〉 admits only infinite models.
Hence, it is satisfiable, but not finitely satisfiable.

Hence, reasoning w.r.t. arbitrary models is different from reasoning
w.r.t. finite models only.
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DL-LiteA syntax

TBox assertions:

Class (concept) inclusion assertions: B v C, with:

B −→ A | ∃Q
C −→ B | ¬B

Property (role) inclusion assertions: Q v R, with:

Q −→ P | P−

R −→ Q | ¬Q

Functionality assertions: (funct Q)
Proviso: functional properties cannot be specialized.

ABox assertions: A(c), P (c1, c2), with c1, c2 constants

Note: DL-LiteA distinguishes also between object and data properties
(ignored here).
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DL-LiteA semantics

Construct Syntax Example Semantics

atomic conc. A Doctor AI ⊆ ∆I

exist. restr. ∃Q ∃child− {d | ∃e. (d, e) ∈ QI}
at. conc. neg. ¬A ¬Doctor ∆I \AI

conc. neg. ¬∃Q ¬∃child ∆I \ (∃Q)I

atomic role P child P I ⊆ ∆I ×∆I

inverse role P− child− {(o, o′) | (o′, o) ∈ P I}
role negation ¬Q ¬manages (∆I ×∆I) \QI

conc. incl. B v C Father v ∃child BI ⊆ CI

role incl. Q v R hasFather v child− QI ⊆ RI

funct. asser. (funct Q) (funct succ) ∀d, e, e′.(d, e) ∈ QI ∧ (d, e′) ∈ QI → e = e′

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , cI2 ) ∈ P I

DL-LiteA (as all DLs of the DL-Lite family) adopts the Unique Name
Assumption (UNA), i.e., different individuals denote different objects.
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Query answering in DL-LiteA

We study answering of UCQs over DL-LiteA ontologies via query
rewriting.

We first consider query answering over satisfiable ontologies, i.e., that
admit at least one model.

Then, we show how to exploit query answering over satisfiable ontologies
to establish ontology satisfiability.

Remark

we call positive inclusions (PIs) assertions of the form

B1 v B2

Q1 v Q2

whereas we call negative inclusions (NIs) assertions of the form

B1 v ¬B2

Q1 v ¬Q2
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Query answering over satisfiable DL-LiteA ontologies

Theorem

Let q be a boolean UCQs and T = TPI ∪ TNI ∪ Tfunct be a TBox s.t.

TPI is a set of PIs
TNI is a set of NIs
Tfunct is a set of functionalities.

For each ABox A such that 〈T ,A〉 is satisfiable, we have that

〈T ,A〉 |= q iff 〈TPI,A〉 |= q.

Proof [intuition]

q is a positive query, i.e., it does not contain atoms with negation nor
inequality. TNI and Tfunct only contribute to infer new negative
consequences, i.e, sentences involving negation.

If q is non-boolean, we have that cert(q, 〈T ,A〉) = cert(q, 〈TPI,A〉).
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Checking satisfiability of DL-LiteA ontologies

Theorem (Separability)

Satisfiability of a DL-LiteA ontology O = 〈T ,A〉 can be reduced to
evaluation of a first order query over A, obtained by the union of

(a) FOL queries expressing the violation of the functionalities in T and

(b) UCQs produced by the query rewriting procedure (which depends
only on the PIs in T ) applied to the CQ expressing the violation of
the NIs in T .

Note that satisfiability in DL-LiteA can be done in LogSpace w.r.t.
the data, using RDMBS technology.
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Query answering in DL-LiteA

Query rewriting

To compute the perfect rewriting, starting from the original (U)CQ,
iteratively get a CQ to be processed and either:

Expand positive inclusions & simplify redundant atoms, or

Unify atoms in the CQ to obtain a more specific CQ to be further
expanded.

Each result of the above steps is added to the queries to be processed.

Query answering

Based on query rewriting: given an (U)CQ and an ontology:

1 Compute its perfect rewriting, which is a UCQ;

2 Evaluate the perfect rewriting on the ABox seen as a DB.

Recall: negative inclusions and functionalities play a role in ontology

satisfiability, but not in query answering.
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Example

Consider the DL-LiteA TBox T :

∃R v B ∃R− v A
A v ∃R−
∃Q v A ∃Q− v C
A v ∃Q (funct Q)
C v B D v B
C v ¬D
B v C tD not expressible!
Q v R−

C

B

D

{subset}

<R 

Q> 
1..1

{disjoint,complete}

1..*A

and the ABox:
A = {A(a)}

Compute the answer to the queries:

q(x) ← Q(x, y), R(y, z).
q′() ← B(x).
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Example (solution)

Rewritings:

q(x) ← Q(x, y), R(y, z).
q(x) ← Q(x, y), Q(z, y). Q v R−

q(x) ← Q(x, y). unify: z = x
q(x) ← A(x). A v ∃Q

=⇒ answer x = a

q′() ← B(x).
q′() ← R(x, y). ∃R v B
q′() ← A(y). A v ∃R−

=⇒ answer true (by y = a)
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Complexity of reasoning in DL-LiteA

Ontology satisfiability and all classical DL reasoning tasks are:

Efficiently tractable in the size of TBox (i.e., PTime).

Very efficiently tractable in the size of the ABox (i.e., LogSpace).

In fact, reasoning can be done by constructing suitable FOL/SQL
queries and evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:

PTime in the size of TBox.

LogSpace in the size of the ABox.

Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

Can we go beyond DL-LiteA?

By adding essentially any other DL construct, e.g., union (t), value
restriction (∀R.C), etc., without some limitations we lose these nice
computational properties (see later).
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Beyond DL-LiteA: results on data complexity

lhs rhs funct.
Prop.
incl.

Data complexity
of query answering

0 DL-LiteA
√

*
√

* in LogSpace
1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√
− NLogSpace-hard

4 A | ∃P .A | A1 uA2 A − − PTime-hard
5 A | A1 uA2 A | ∀P .A − − PTime-hard
6 A | A1 uA2 A | ∃P .A

√
− PTime-hard

7 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard
8 A | ∃P | ∃P− A | ∃P | ∃P−

√ √
PTime-hard

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

Notes:

* with the “proviso” of not specializing functional properties.

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion
AL v AT tAF suffices! ; No hope of including covering constraints.
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Outline

1 Introduction

2 Querying data through ontologies

3 DL-LiteA: an ontology language for accessing data

4 Ontology-based data integration

5 Discussion
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Ontology-based data integration:
conceptual layer & data layer

Ontology-based data integration is based on the idea of decoupling information
access from data storage.

ontology-based data integration

sources

q

sources
sources

ontology

conceptual layer

data layer

Clients access only the conceptual layer ... while the data layer, hidden to
clients, manages the data.
; Technological concerns (and changes) on the managed data become fully
transparent to the clients.
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Ontology-based data integration: architecture

ontology-based data integration

sources

q

sources
sources

ontology

Based on three main components:

Ontology, used as the conceptual layer to give clients a unified
conceptual “global view” of the data.

Data sources, these are external, independent, heterogeneous, multiple
information systems.

Mappings, which semantically link data at the sources with the ontology
(key issue!)
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Ontology-based data integration: the conceptual layer

The ontology is used as the conceptual layer, to give clients a unified
conceptual global view of the data.

ontology-based data integration

sources

q

sources
sources

ontology

Note: in standard information systems, UML Class Diagram or ER is used at
design time, ...
... here we use ontologies at runtime!
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Ontology-based data integration: the sources

Data sources are external, independent, heterogeneous, multiple information
systems.

ontology-based data integration

sources

q

sources
sources

ontology

By now we have industrial solutions for:

Distributed database systems & Distributed query optimization

Tools for source wrapping

Systems for database federation, e.g., IBM Information Integrator
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Ontology-based data integration: the sources

Data sources are external, independent, heterogeneous, multiple information
systems.

ontology-based data integration

sources

q

sources
sources

ontology

Based on these industrial solutions we can:

1 Wrap the sources and see all of them as relational databases.

2 Use federated database tools to see the multiple sources as a single one.

; We can see the sources as a single (remote) relational database.
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Ontology-based data integration: mappings

Mappings semantically link data at the sources with the ontology.

ontology-based data integration

sources

q

sources
sources

ontology

Scientific literature on data integration in databases has shown that ...

... generally we cannot simply map single relations to single elements of the
global view (the ontology) ...

... we need to rely on queries!
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Ontology-based data integration: mappings

Mappings semantically link data at the sources with the ontology.

ontology-based data integration

sources

q

sources
sources

ontology

Several general forms of mappings based on queries have been considered:

GAV: map a query over the source to an element in the global view
– most used form of mappings

LAV: map a relation in the source to a query over the global view
– mathematically elegant, but difficult to use in practice (data in the
sources are not clean enough!)

GLAV: map a query over the sources to a query over the global view
– the most general form of mappings

This is a key issue (more on this later).
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Ontology-based data integration: the DL-Lite solution

ontology-based data integration

sources

q

sources
sources

ontology

We require the data sources to be wrapped and presented as relational
sources. ; “standard technology”

We make use of a data federation tool, such as IBM Information
Integrator, to present the yet to be (semantically) integrated sources as a
single relational database. ; “standard technology”

We make use of the DL-Lite technology presented above for the
conceptual view on the data, to exploit effectiveness of query
answering. ; “new technology”
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Ontology-based data integration: the DL-Lite solution

ontology-based data integration

sources

q

sources
sources

ontology

Are we done? Not yet!

The (federated) source database is external and independent from the
conceptual view (the ontology).

Mappings relate information in the sources to the ontology. ; sort of
virtual ABox

We use GAV (global-as-view) mappings: the result of an (arbitrary) SQL
query on the source database is considered a (partial) extension of a
concept/role.

Moreover, we properly deal with the notorious impedance mismatch
problem!
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Impedance mismatch problem

The impedance mismatch problem

In relational databases, information is represented in forms of
tuples of values.

In ontologies (or more generally object-oriented systems or
conceptual models), information is represented using both objects
and values ...

... with objects playing the main role, ...

... and values a subsidiary role as fillers of object’s attributes.

; How do we reconcile these views?

Solution: We need constructors to create objects of the ontology out
of tuples of values in the database.
Note: from a formal point of view, such constructors can be simply
Skolem functions!
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Ontology with mappings – Example

TBox T (UML)

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

federated schema of the DB S
D1[SSN: String, PrName: String]

Employees and Projects they work for

D2[Code: String, Salary : Int]
Employee’s Code with salary

D3[Code: String, SSN: String]
Employee’s Code with SSN

. . .

Mapping M
M1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
workFor(pers(SSN), proj(PrName))

M2: SELECT SSN, Salary
FROM D2, D3

WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)
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DL-LiteA query answering for data integration

Given a (U)CQ q and Om = 〈T ,S,M〉 (assumed satisfiable, i.e., there
exists at least one model for Om), we compute cert(q,Om) as follows:

1 Using T , reformulate CQ q as a union rq,T of CQs.

2 Using M, unfold rq,T to obtain a union unfold(rq,T ) of CQs.

3 Evaluate unfold(rq,T ) directly over S using RDBMS technology.

Correctness of this algorithm shows FOL-reducibility of query answering.
; Query answering can again be done using RDBMS technology.
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Computational complexity of query answering

Theorem

Query answering in a DL-LiteA ontology with mappings
O = 〈T ,S,M〉 is

1 NP-complete in the size of the query.

2 PTime in the size of the TBox T and the mappings M.

3 LogSpace in the size of the database S, in fact FOL-rewritable.

Can we move to LAV or GLAV mappings?
No, if we want to have DL-LiteA TBoxes and stay in LogSpace!

Alternatively, we can have LAV or GLAV mappings, but we have to
renounce to use functionalities in the TBox (thus not having
DL-LiteA TBoxes) and limit the form of the queries in the mapping
(essentially CQs over both the sources and the ontology), if we want to
stay in LogSpace.
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Outline

1 Introduction

2 Querying data through ontologies

3 DL-LiteA: an ontology language for accessing data

4 Ontology-based data integration

5 Discussion
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Beyond union of conjunctive queries

Till now we have assumed that the client queries are UCQs (aka positive
queries).
Can we go beyond UCQ? Can we go to full FOL/SQL queries?

No! Answering FOL queries in presence of incomplete information
is undecidable: Consider an empty source (no data), still a
(boolean) FOL query may return true because it is valid! (FOL
validity is undecidable)

Yes! With some compromises:
Query what the ontology knows about the domain, not what is
true in the domain!
On knowledge we have complete information, so evaluating FOL
queries is LogSpace.
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SparSQL

Full SQL, but with relations in the FROM clause that are UCQs,
expressed in SPARQL, over the ontology.

SPARQL queries are used to query what is true in the domain.

SQL is used to query what the ontology knows about the domain.

Example: negation

Return all known people that are neither known to be male nor
known to be female.

SELECT persons.x FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ’Person’}

) persons

EXCEPT ( SELECT males.x FROM

SparqlTable(SELECT ?x

WHERE {?x rdf:type ’Male’}

) males

UNION SELECT females.x FROM SparqlTable(SELECT

?x

WHERE {?x rdf:type ’Female’}

) females

)

Example: aggregates

Return the people and the number of their known
spouses, but only if they are known to be married to
at least two people.

SELECT marriage.x, count(marriage.y) FROM

SparqlTable(SELECT ?x ?y

WHERE {?x :MarriedTo ?y}

) marriage

GROUP BY marriage.x HAVING count(marriage.y) >= 2
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SparSQL in DL-LiteA

Answering of SparSQL queries in DL-LiteA:

1 Expand and unfold the UCQs (in the SparqlTables) as usual in
DL-LiteA ; an SQL query over the sources for each SparqlTable in
the FROM clauses.

2 Substitute SparqlTables with the new SQL queries. ; the result is
again an SQL query over the sources!

3 Evaluate the resulting SQL query over the sources

Note works both for large ABoxes and for data integration!
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Data completion approach to DL-LiteA

The approach presented is essentially “hands-off w.r.t. the data”: a
key features in several domains including data integration.

But what if we allow LogSpace/NLogSpace/PTime computation
over the data?

See:

The Combined Approach to Query Answering in DL-Lite. By
Kontchakov, Lutz, Toman, Wolter and Zakharyaschev.
KR2010 Ray Reiter Best Paper Award!
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Case studies in industrial settings

We are conducting extensive experimentations with some companies and
organizations:

SELEX, world leading company in the provision of air traffic
systems: integration of disperse data about obsolescence of
apparatus components (2008)

Monte Paschi Siena, one of the main Italian banks: pilot project on
data concerning grant credit risk estimation (2008); extensive use
as support in the re-engineering of the information system after
merging with Banca Antonveneta (2010-2012)

Accenture, a world leading company in ITC consultancy: pilot
project on the ADSL traffic domain (2010)

SAPIENZA, University of Rome: ontology-based data access to the
informative system of the university (2009-ongoing)
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The QuOnto-Mastro tools

QuOnto is a tool for representing and reasoning over ontologies of the
DL-Lite family.

Basic functionalities:

Ontology representation and classification
Ontology satisfiability check
Intensional reasoning services: concept/property subsumption and
disjunction, concept/property satisfiability
Query Answering of UCQs

Includes also full support for:

Identification path constraints
Denial constraints
Epistemic queries –expressed in SparSQL
Epistemic constraints –expressed as boolean SparSQL queries

Reasoning services are highly optimized

Can be used with internal and external DBMS (include drivers for Oracle,
DB2, IBM Information Integrator, SQL Server, MySQL, etc.)

Implemented in Java
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The QuOnto-Mastro tools (cont’d)

Mastro uses QuOnto at its core and extends its functionalities
providing support for specifying and managing mappings between
DL-LiteA ontologies and data stored in external systems (e.g.,
Oracle, DB2, IBM Information Integrator, etc.), and for extracting
data from such systems by querying the ontology.
An open source plugin for Protégé that extends the ontology editor
with facilities to design Mappings towards those external DBMS is
available.

The plugin for Protégé 4 can downloaded at
www.dis.uniroma1.it\quonto.
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Wrapping up

Ontology-based data access and integration is a challenging
problem with great practical relevance.

In this setting, the size of the data is the relevant parameter that
must guide technological choices.

Currently, scalability w.r.t. the size of the data can be achieved
only by relying on commercial technologies for managing the data,
i.e., relational DBMS systems and federation tools.

In order to tailor semantic technologies so as to provide a good
compromise between expressivity and efficiency, requires a thorough
understanding of the semantic and computational properties of the
adopted formalisms.

We have now gained such an understanding, that allows us to
develop very good solutions for ontology-based data access and
integration.

One of the three OWL 2 profiles, namely “OWL 2 QL”, is directly
based on this understanding.
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