Grammar Rules in Prolog
Backus-Naur Form (BNF)

◊ BNF is a common grammar used to define programming languages
 » Developed in the late 1950’s

◊ Because grammars are used to describe a language they are said to produce **sentences**
Grammars can be used to describe the structure of objects and computations.

- Can be used to describe the structure of input
 - Parse
- Can be used to generate output
 - Compute
- Can be used to describe the structure of algorithms
 - Design
A grammar, G, is a 4-tuple $G = <T, N, S, P>$, where

» T – a set of terminal symbols
 > They represent themselves
 – A, begin, 123

» N – a set of non-terminal symbols
 > They are enclosed between ‘<‘ and ‘>’
 – <program> <while> <letter> <digit>

» $S \in N$ – the starting symbol
Grammar Definition – 2

» P – is a finite set of production or rewrite rules of the form

\[\alpha ::= \beta \]

> \(\alpha \) and \(\beta \) are sequences, strings, of terminal and non-terminal symbols

> \(|\alpha| \geq 1 \)

> \(\alpha \) contains at least one non-terminal symbol
Types of Grammars

◊ Type 0 – Unrestricted or General grammars
 » Correspond to Turing machines
 » Can compute anything

◊ Type 1 – Context sensitive grammars
 » In general not used, as they are too complex

◊ Type 2 – Context free grammars
 » Often used to describe the structure of programming languages
Types of Grammars – 2

◊ Type 3 – Regular grammars
 » Correspond
 > Regular expressions
 > Finite state machines

» Most business problems can be described with regular grammars
 > Although context free grammars are used, due to their ease of use
Unrestricted Grammar

◊ No restrictions on the definition

 » In particular permits $| \beta | < | \alpha |$

 > Permits erasure of terminal symbols
Context Sensitive Grammar

◊ Restrict productions such that there is no erasure

\[|\beta| \geq |\alpha| \]

> One exception is that the starting symbol may be in the production \(<\text{Start}> ::= \varepsilon \) to be able to produce the empty sentence

◊ The following defines the language

\[A^n B^n C^n \text{ for } n \geq 1 \]

(1) \(<S> ::= <A> C \)
(2) \(<S> ::= <A> <S> C \)
(3) \(<A> ::= <A> \)
(4) \(C ::= B C \) \hspace{1cm} (5) \(B ::= B B \)
(6) \(<A> B ::= A B \) \hspace{1cm} (7) \(<A> A ::= A A \)

© Gunnar Gotshalks
Context Free Grammar

◊ Restrict α to be a single non-terminal
 $\Rightarrow |\alpha| = 1$
 > This permits non-terminals to be removed
 – Note there is no erasure as terminals cannot be removed

◊ The following defines the language

$$A^n B^n \text{ for } n \geq 0$$

(1) $<S> ::= \varepsilon$
(2) $<S> ::= A <S> B$
Regular Grammar

◊ Restrict \(\alpha \) to be a single non-terminal

◊ Restrict \(\beta \) to have at most one non-terminal, with the non-terminal, if it occurs, being at either end of \(\beta \)

\[|\beta| \geq 1 \]

> One exception is that the starting symbol may be in the production \(<\text{Start}> ::= \epsilon\) to be able to produce the empty sentence

◊ Can restrict, without loss of generality to productions of the following structure giving a Right Regular Grammar

(1) \(<\text{non terminal}> ::= \text{terminal}\)

(2) \(<\text{non terminal}> ::= \text{terminal} <\text{non terminal}>\)
Sentence Generation for $A^n B^n$

◊ $<$S$> \rightarrow \varepsilon$ \hspace{1cm} Rule 1

◊ $<$S$> \rightarrow A <S> B$ \hspace{1cm} Rule 2
 $\rightarrow A B$ \hspace{1cm} Rule 1

◊ $<$S$> \rightarrow A <S> B$ \hspace{1cm} Rule 2
 $\rightarrow A A <S> B B$ \hspace{1cm} Rule 2
 $\rightarrow A A B B$ \hspace{1cm} Rule 1

◊ $<$S$> \rightarrow A <S> B$ \hspace{1cm} Rule 2
 $\rightarrow A A <S> B B$ \hspace{1cm} Rule 2
 $\rightarrow A A A <S> B B B$ \hspace{1cm} Rule 2
 $\rightarrow A A A B B B$ \hspace{1cm} Rule 1

◊ ...
Parsing & Prolog

◊ Parsing is the opposite of sentence generation
 » Task is to find a sequence of rules that produce a given sentence

◊ Prolog has a built-in notation for representing grammar rules called **Definitive Clause Grammar (DCG)**
In a DCG the grammar for $A^n B^n$ is represented as follows

(1) $S \rightarrow [A], [B]$.
(2) $S \rightarrow [A], S, [B]$.

Upper case is used in the slide for easier reading, in Prolog lower case (constants) would be used for A and B and not upper case (variables).
DCG Translation

◊ DCG statements are translated into Prolog

◊ The following are examples.

\[
\begin{align*}
n & \rightarrow n1 , n2 , \ldots , nn . \\
n & (S, Rest) :- \\
& \quad n1(S, R2), n2(R2, R3) , \ldots , nn(Rn, Rest) . \\
n & \rightarrow [T1] , [T2] , \ldots [Tn] . \\
n & ([T1, T2, \ldots , Tn | Rest] , Rest) . \\
n & \rightarrow n1 , [T2] , n3 , [T4] . \\
n & (S, Rest) :- n1(S, [T2 | R3]) , n3(R3, [T4 | Rest]) . \\
n & \rightarrow [T1] , n2 , [T3] , n4 . \\
n & ([T1 \mid R2], Rest) :- \\
& \quad n2(R2, [T3 \mid R4]) , n4(R4, Rest) .
\end{align*}
\]
Translation of $A^n B^n$

$S \rightarrow \{A\}, \{B\}.$
$S \rightarrow \{A\}, S, \{B\}.$

\Rightarrow

$s(\{a, b \mid \text{Rest}\}, \text{Rest}).$

$s(\{a \mid \text{R1}\}, \text{Rest}) :\text{=} s(\text{R1}, \{b \mid \text{Rest}\}).$

◊ Every sentence is represented by 2 lists

» Difference lists of symbols

> The first list is the sentence you are parsing

> The second list is the part of the sentence that is left-over when parsing is done

Sample queries

\[
\begin{align*}
 s(\{a, b\}, \{\}\). \\
 s(\{a, a, b, b\}, \{\}\). \\
 s(\{a, a, b, b, c\}, \{c\}). \\
\end{align*}
\]
Movement example

move --> step.
move --> step, move.
step --> [up].
step --> [down].

Example queries

move ([up, up, down] , []).
move ([up, up, left] , []).
move ([up, M, up] , []).

Translation

move (List , Rest) :- step (List , Rest).
move (List1 , Rest) :- step (List1 , List2) , move (List2, Rest).
step ([up I Rest] , Rest).
step ([down I Rest] , Rest).
P is a T example using determinants

parse --> [P], [is, a], [T].

Example query
parse ([‘John’ , is , a , person , ‘.’] , []).

Translation

parse (S , Sr) :- det1 (S , S0)
 , det2 (S0 , S1)
 , det3 (S1 , S2)
 , det4 (S2 , Sr).

 det1 ([P | St] , St).
 det2 ([is, a | St] , St).
 det3 ([T | St] , St).
 det4 ([‘.’ | St] , St).
Unrestricted grammars have been used to write programs

- **Snobol language was used to develop a system called MUMPS that was used in hospital applications circa 1960’s–1970’s**
In Snobol a grammar is defined to translate (rewrite) an input string of symbols to an output string of symbols.

- The production rules are applied using the Markov algorithm.
 - Developed during the 1940's as yet another description of what it means to compute.

- Works in a similar way to Prolog.
 - Pattern matching takes place on strings, instead of compound terms.

© Gunnar Gotshalks
Markov Algorithm

◊ Input
 » A numbered set of productions $\alpha \rightarrow \beta$
 > Numbering is from 1 up
 » An input string – maStr – over the alphabet
 > No distinction needed for terminals and non-terminals

◊ Computation
 » The productions are applied to the sequence of strings beginning with the input string

◊ Output
 » The resulting string when no production is applicable
PROCEDURE
VAR j : integer { An index to a production.}
; k : integer { An index to the occurrence of an alpha [j] in maStr.}
; notAtEnd : boolean { Goes FALSE when algorithm is done.}

; BEGIN
 j := 1 { Start at production 1.}
 ; notAtEnd := true

 ; WHILE notAtEnd DO BEGIN
 ... DO loop body – see next slide
 END
END
Markov Algorithm Body of Loop

{ Find left most occurrence of alpha.}
k := index(maStr, 1, alpha[j])

; IF k = 0 THEN {No alpha, try the next production.}
BEGIN j := j+1 {No alpha, try the next production.}

; IF j > prodCount {Do we have a production to try?}
THEN notAtEnd := false {No production, stop.}
END
END

ELSE BEGIN {Found alpha, apply production.}
replace(maStr, beta[j], k, alpha[j].length)
j := 1 {Start with first production again.}
END

END

© Gunnar Gotshalks
MA Add two binary numbers

◊ Alphabet

» 0 1 <- The binary digits.
» a <- Remember a 1.
» b <- Remember a 0.
» c <- Remember a carry.
» N <- A 1 in the sum.
» Z <- A 0 in the sum.
» X <- Separator for the two input numbers.
MA Add two binary numbers – 2

◊ Productions

» a1 -> 1a ; a0 -> 0a ; <- Travel right with a one
» b1 -> 1b ; b0 -> 0b ; <- Travel to right with a zero
» 1c -> c0 ; 0c -> 1 ; c -> 1 ; <- Propagate a carry
» 1a -> cZ ; 0a -> N ; Xa -> N ; <- Add one to least sig digit of n2
» 1b -> N ; 0b -> Z ; Xb -> Z ; <- Add zero to least sig digit of n2
» 1X -> Xa ; 0X -> Xb ; <- Move least sig digit of n1 to add position
» N -> 1 ; Z -> 0 ; <- Recover all zeros and ones

◊ An input string

» 101X1101
SNOBOL – Syntactic Sugar

◊ Some productions terminate with a period
 » If such a production is applied, the computation terminates

◊ Some productions are labeled

◊ Some productions have success and failure tags
 » If such a production is applied, the Markov algorithm resumes from the production labeled by the success tag
 » If such a production is not applied, then the Markov algorithm resumes from the production labeled by the failure tag