
Iterator-1© Gunnar Gotshalks

Iterator Pattern – Behavioural

• Intent
» Access elements of a container sequentially

without exposing the underlying representation

Iterator-2© Gunnar Gotshalks

Motivation

• Be able to process all the elements in a container

• Different iterators can give different sequential
ordering
» Binary tree

> preorder, inorder, postorder

» Do not need to extend container interface

Iterator-3© Gunnar Gotshalks

Example Architecture

BINARY_TREE

size
insertLeft (NODE , ELEMENT)
remove (PARENT, NODE)
...

TREE_ITERATOR +

make_inorder
make_preorder
make_postorder
next +
allDone +
item +

Iterator knows the internal
structure – export all
relevant features to it

ITERATOR *

next *
allDone *
item *object

Iterator-4© Gunnar Gotshalks

Example Client

tree_items : TREE_ITERATOR
...
from create tree_items.make_inorder (a_tree)
until tree_items.allDone
loop
 item := tree_items.item
 process (item)
 tree_items.next
end

Iterator-5© Gunnar Gotshalks

Abstract Architecture

CONTAINER +

size
add
remove

CONCRETE_ITERATOR +

make_1
make_2
next +
allDone +
item +

ITERATOR *
next *
allDone *
item *

object

Iterator-6© Gunnar Gotshalks

Participants

• Iterator
Defines interface for accessing and traversing a
container’s contents

• Concrete iterator
» Implements the iterator interface
» Keeps track of the current position in the traversal
» Determines next object in a sequence of the

container’s objects

• Container
Could provide a method to create an instance of an
iterator

Done in Java due to the poor export control

Iterator-7© Gunnar Gotshalks

Applicability

• Access a container’s contents without knowing about
or using its internal representation

• Provide uniform interface for traversing a container’s
contents

Support polymorphic iteration

Iterator-8© Gunnar Gotshalks

Consequences

• Supports variations in the traversal of a container
» Complex containers can be traversed in different

ways
Trees and graphs

» Easy to change traversal order
Replace iterator instance with a different one

• Iterators simplify the container interface
Do not need iterator interface in container interface

• Multiple simultaneous traversals
Each iterator keeps track of its own state

Iterator-9© Gunnar Gotshalks

Implementation

• Can implement null iterators
allDone is always True

» Useful in traversing tree structures
> At each level use iterator over children
> At leaf level automatically get a null iterator
> No exceptions at the boundary

Iterator-10© Gunnar Gotshalks

Inorder Traversal Binary Tree

public Enumeration inOrderLRtraversal() {
 return new Enumeration() {
 Declare variables needed by the enumeration
 {
 Initialization program for the enumerator
 }

 public boolean hasMoreElements() {
 Provide the definition
 }
 public Object nextElement() {
 Provide the definition
 }
}

Iterator-11© Gunnar Gotshalks

Inorder Traversal Binary Tree – 2

// Declare variables needed by the enumeration
 private Stack btStack = new Stack();

 { // Initialization program for the enumerator
 // Simulate recursion by programming our own
 // stack. Need to get to the leftmost node as it
 // is first in the enumeration
 Node node = tree;

 while (node != null) {
 btStack.add(node);
 node = node.left;
 }

 }

root

top of
stack

Iterator-12© Gunnar Gotshalks

Inorder Traversal Binary Tree – 3

public boolean hasMoreElements() {
 return ! btStack.isEmpty();
}

Iterator-13© Gunnar Gotshalks

Inorder Traversal Binary Tree – 4

root

top of
stack
initially

1

2

3

4

5

6

top of stack after
first call to nextElement

top of stack after
second call to nextElement

InitStack
after
call 1

after
call 2

3
2
1

6
5
4
2
1

5
4
2
1

An enumerator is
always 1 element
ahead of the user

Iterator-14© Gunnar Gotshalks

Inorder Traversal Binary Tree – 5

public Object nextElement() {
 if (btStack.isEmpty())
 throw new NoSuchElementException();
 Node node = (Node) btStack.remove();
 Object result = node.datum; // next data to return
 if (node.right != null) { // Find next sequence node
 node = node.right;
 do { btStack.add(node); // Get leftmost node in
 node = node.left; // right subtree
 } while (node != null);
 }
 return result;
}

Notice that an
enumerator is always
1 element ahead

Iterator-15© Gunnar Gotshalks

What iterators do not do

• Create a copy, modify it and iterate over the copy
» Sometimes efficiency may dictate a compromise

• Iterators do not modify the original
» Leave a "bookmark"
» Fold the page of a book

Iterator-16© Gunnar Gotshalks

Should iterate aggregate contents?

• If aggregation is complex (binary tree traversal) and
multiple iterations are needed, execution can be
more efficient
» Aggregate contains pointers to original

• Can be expensive in storage space for large
collections

• If an object has multiple roles (occurs multiple times
in the collection, e.g. Leila is the CEO and an
engineer), then could lose a role with aggregation

Iterator-17© Gunnar Gotshalks

Related Patterns

• Iterators are frequently applied to Composites

• Polymorphic iterators rely on factory methods to
instantiate the appropriate Iterator subclass

• Memento is often used in conjunction with the Iterator
pattern. An iterator can use a memento to capture
the state of an iteration. The iterator stores the
memento internally.

Iterator-18© Gunnar Gotshalks

Iterator in Java API

• The example binary tree iterator in previous slides
shows that the Java class Enumerator is an
instantiation of the Iterator pattern

• Java also has the class Iterator with the following
methods
» next(), hasNext() and remove()

