
Command-1!© Gunnar Gotshalks!

Command Pattern – Behavioural!

•  Intent!
»  Encapsulate a request as an object!
»  Parameterize clients with different requests!
»  Queue or log requests!
»  Support undoable operations!

•  Alternate names!
!Action, Transaction!

Command-2!© Gunnar Gotshalks!

Motivation!

•  Need to issue requests to objects without knowing
anything about the operation or the receiver of the request!
!Buttons and menus!

!Operation is not implemented in them!

•  Command pattern is the OO language equivalent of a
callback in a procedural language!

!

Command-3!© Gunnar Gotshalks!

Example Architecture!

*!COMMAND!

execute *!

+!
TEXT_EDITOR!

save!
quit!

+!
BUTTON!

do_cmd!

execute +!

+!
SAVE!

execute +!

+!
QUIT!

command!

receiver!

Command-4!© Gunnar Gotshalks!

Abstract Architecture!

+!
RECEIVER!

operation!

+!
INVOKER!

the_command!

*!COMMAND!

execute *!

execute +!

+!
A_COMMAND!

the_receiver.operation

the_command!

the_receiver!

Command-5!© Gunnar Gotshalks!

1!

2!

3!

Scenario!

Scenario: Set things up!

1   Create the_receiver!
2   Create a command object and set the receiver!
3   Create an invoker and set the command object!

Later!

CLIENT!

A_COMMAND!

INVOKER!
Scenario: do command!

1   do_command!
2   execute!

INVOKER! A_COMMAND! RECEIVER!1! 2!

RECEIVER!

Command-6!© Gunnar Gotshalks!

Participants!

•  Command!
!Declares interface for command execution!

•  A_command!
»  Has binding between a receiver and an operation!
»  Defines execute to do corresponding operation on

receiver!

•  Invoker!
!Asks Command to execute the command!

•  Receiver!
!Does the real work for the command !

•  Client!
!Creates command object, sets Receiver and Invoker !

Command-7!© Gunnar Gotshalks!

Applicability!

•  Want to parameterize objects by an action to perform 
!

•  Specify, queue and execute requests at different times!
»  Command object has a life time independent of the

request 
!

»  Provided requests are represented in an address-space
independent way, then requests can be executed in a
different process than the original process!

Command-8!© Gunnar Gotshalks!

Applicability – 2!

•  Want to support undo!
»  Execute operation stores state  
!

•  Want logging of changes to recover in case of a crash  
!

•  Command pattern can model transaction systems!
»  Transaction systems are structured around high-level

operations build on primitive operations  
!

»  Easy to extend with new transactions!

Command-9!© Gunnar Gotshalks!

Related Patterns!

•  Composite can be used to implement macro commands!

•  Memento can hold the state a command requires to undo
its effect!

•  Commands that are copied before being placed on a
history list act as Prototypes!

