
Decorator-1© Gunnar Gotshalks

Decorator Pattern – Structural

• Intent
» Attach additional responsibilities to an object

dynamically

» Provide a flexible alternative to sub-classing for
extending functionality

• Also known as
» Wrapper

Decorator-2© Gunnar Gotshalks

Motivation

• Need to add responsibility to individual objects not to
entire classes

Add properties like border, scrolling, etc. to any
user interface component as needed

• Enclose object within a decorator object for flexibility
Nest recursively for unlimited customization

Decorator-3© Gunnar Gotshalks

Example Text Decoration

• Compose a border decorator with a scroll decorator
for text view.

a_border_decorator

component a_scroll_decorator

component a_text_view

Decorator-4© Gunnar Gotshalks

Text Example Architecture

VISUAL_COMPONENT *

draw *

TEXT_VIEW +
draw+

SCROLL_DECORATOR +
draw+
scroll_position+
scroll_to+

BORDER_DECORATOR +
draw+
border_width+
draw_border+

DECORATOR *

component

Decorator-5© Gunnar Gotshalks

Abstract Architecture

COMPONENT *

method *

CONCRETE_COMPONENT +
method+

CONCRETE_DECORATOR_A +
other_method+
method+

DECORATOR *

component

CONCRETE_DECORATOR_B +
method+
other_method+

pre_actions
component.method
post_actions

Recursive do
method in chain

Decorator-6© Gunnar Gotshalks

Participants

• Component
Defines the interface for objects that can have
responsibilities added to them dynamically

• Concrete component
Defines an object to which additional
responsibilities can be attached

• Decorator
Maintains a reference to a component object and
defines an interface that conforms to COMPONENT

• Concrete decorator
Add responsibilities to the component

Decorator-7© Gunnar Gotshalks

Applicability

• Add responsibilities to individual objects dynamically
and transparently

Without affecting other objects

• For responsibilities that can be withdrawn

• When subclass extension is impractical
Sometimes a large number of independent
extensions are possible

Avoid combinatorial explosion
Class definition may be hidden or otherwise
unavailable for subclassing

Decorator-8© Gunnar Gotshalks

Benefits

• More flexible than static inheritance
» Can add and remove responsibilities dynamically
» Can handle combinatorial explosion of possibilities

• Avoids feature laden classes high up in the hierarchy
» Pay as you go when adding responsibilities
» Can support unforeseen features
» Decorators are independent of the classes they

decorate
» Functionality is composed in simple pieces

Decorator-9© Gunnar Gotshalks

Liabilities

• From object identity point of view, a decorated
component is not identical
» Decorator acts as a transparent enclosure
» Cannot rely on object identity when using

decorators

• Lots of little objects
» Often result in systems composed of many look

alike objects
» Differ in the way they are interconnected, not in

class or value of variables
» Can be difficult to learn and debug

Decorator-10© Gunnar Gotshalks

Why not use a collection class?

• A design using an array or linked list of the decorator
class objects provides the same functionality

» Client interface for the base object becomes more
complex

» Client becomes more specialized for the problem
> Has to know the Decorator classes to be able to

program the method operation with appropriate
pre- and post-actions

Decorator-11© Gunnar Gotshalks

Related Patterns

• Adapter changes interface to an object, while
Decorator changes an objectʼs responsibilities

• Decorator is a degenerate Composite – only one
component
» But Decorator is not meant for object aggregation,

only for added responsibility
> Similar to the Chain of Responsibility pattern

• Strategy lets you change the internals of an object,
while Decorator changes the exterior

Decorator-12© Gunnar Gotshalks

Decorator in Java API

• Used in input classes
» At base is an InputStream object such as

System.in.
» InputStreamReader decorates InputStream
» BufferedReader in turn decorates

InputStreamReader

inputObject =
 BufferedReader (InputStreamReader (System.in))

