
22-1	
© Gunnar Gotshalks!

Inheritance!
and!

Design by Contract!

22-2	
© Gunnar Gotshalks!

Parents Invariant Rule!

•  The invariants of all the parents of a class apply to the
class itself!

22-3	
© Gunnar Gotshalks!

Parents Invariant Rule – 2!

•  The invariants of all the parents of a class apply to the
class itself!
»  The parent’s invariants are AND’ed together, along with

the invariants of this class!

22-4	
© Gunnar Gotshalks!

Parents Invariant Rule – 3!

•  The invariants of all the parents of a class apply to the
class itself!
»  The parent’s invariants are AND’ed together, along with

the invariants of this class!
»  If no invariants are given then TRUE is assumed!

22-5	
© Gunnar Gotshalks!

Parents Invariant Rule – 4!

•  The invariants of all the parents of a class apply to the class itself!

»  The parent’s invariants are AND’ed together, along with the
invariants of this class!

»  If no invariants are given then TRUE is assumed!

•  Flat and interface forms provide a convenient way to see
the whole story!

22-6	
© Gunnar Gotshalks!

Parents Invariant Rule – 5!

•  The invariants of all the parents of a class apply to the class itself!

»  The parent’s invariants are AND’ed together, along with the
invariants of this class!

»  If no invariants are given then TRUE is assumed!

•  Flat and interface forms provide a convenient way to see
the whole story!
»  Flat is used by the supplier!
»  Interface is used by the client!

22-7	
© Gunnar Gotshalks!

Parents Invariant Rule – 6!

•  The invariants of all the parents of a class apply to the class itself!

»  The parent’s invariants are AND’ed together, along with the
invariants of this class!

»  If no invariants are given then TRUE is assumed!

•  Flat and interface forms provide a convenient way to see
the whole story!
»  Flat is used by the supplier!
»  Interface is used by the client!

>  Does not have class history – redefine, rename, etc.!

22-8	
© Gunnar Gotshalks!

Meaning of Design by Contract!

C! A!
r require !
...!
ensure !
end!

-- In C!
a1 : A!
if a1. then!
 a1.r!
 check a1. 	

 ... assume a1. is true!
end!

Verify preconditions!
if not clear they are satisfied!

Verify postconditions.!
Not needed with exception!
handling!

α

β

α

β
β

22-9	
© Gunnar Gotshalks!

Enter Dynamic Binding!

C! A!
r require !
...!
ensure !
end!

B!
r require !
...!
ensure !
end!

++!
-- In C!
a1 : A!
a1 := instance of type B!
if a1. ?pre? then!
 a1.r!
 check a1. ?post?	

 ... assume a1. ?post? is true!
end!

What are ?pre?!
and ?post?!
!
What restrictions are!
on and ?!

α

β

γ

δ

γ δ

22-10	
© Gunnar Gotshalks!

How to cheat!

•  Two ways!

»  C expects is sufficient but B
has stronger preconditions!

>  don't accept all inputs!
>  demand more from client!
>  client is wrong!

-- In C!
a1 : A!
a1 := instance of type B!
if a1. ?pre? then!
 a1.r!
 check a1. ?post?	

 ... assume a1. ?post?!
end!

α

22-11	
© Gunnar Gotshalks!

How to cheat – 2!

•  Two ways!
»  C expects is sufficient but B has

stronger preconditions!
>  don't accept all inputs!
>  demand more from client!
>  client is wrong!

»  C expects is delivered but B
has weaker postcondition!

>  deliver outside the range!
>  effectively deliver less!

-- In C!
a1 : A!
a1 := instance of type B!
if a1. ?pre? then!
 a1.r!
 check a1. ?post?	

 ... assume a1. ?post?!
end!

α

β

22-12	
© Gunnar Gotshalks!

Be Honest!

•  Replace precondition with a weaker precondition!
»  Expect less from the client than they are prepared to do!

>  require clause becomes weaker!

22-13	
© Gunnar Gotshalks!

Be Honest – 2!

•  Replace precondition with a weaker precondition!
»  Expect less from the client than they are prepared to do!

>  require clause becomes weaker  
!

•  Replace postcondition with a stronger postcondition!
»  Deliver more to the client than they expect to get!

>  ensure clause becomes stronger!

22-14	
© Gunnar Gotshalks!

Be Honest – 3!

•  Replace precondition with a weaker precondition!
»  Expect less from the client than they are prepared to do!

>  require clause becomes weaker  
!

•  Replace postcondition with a stronger postcondition!
»  Deliver more to the client than they expect to get!

>  ensure clause becomes stronger  
!

•  Willing to do the job as good as or better!

22-15	
© Gunnar Gotshalks!

Design by Contract with Dynamic Binding!

•  Contracts cannot be broken by redefinition!

22-16	
© Gunnar Gotshalks!

DbC with Dynamic Binding – 2!

•  Contracts cannot be broken by redefinition!

•  Assertions require and ensure are inherited!

22-17	
© Gunnar Gotshalks!

DbC with Dynamic Binding – 3!

•  Contracts cannot be broken by redefinition!

•  Assertions require and ensure are inherited!
»  Every behaviour of the redefined method satisfies the

original contract!

22-18	
© Gunnar Gotshalks!

DbC with Dynamic Binding – 4!

•  Contracts cannot be broken by redefinition!

•  Assertions require and ensure are inherited!
»  Every behaviour of the redefined method satisfies the

original contract!
»  But can do more!

22-19	
© Gunnar Gotshalks!

DbC with Dynamic Binding – 5!

•  Contracts cannot be broken by redefinition!

•  Assertions require and ensure are inherited!
»  Every behaviour of the redefined method satisfies the

original contract!
»  But can do more!

>  Accept more input cases!
>  Deliver more specific outputs!

22-20	
© Gunnar Gotshalks!

Subcontracting!

•  Redefinition is like subcontracting!

22-21	
© Gunnar Gotshalks!

Subcontracting – 2!

•  Redefinition is like subcontracting!

•  To validate a subcontract requires a theorem prover for
the general case  
!

	
 	
 and!→α βγ δ→

22-22	
© Gunnar Gotshalks!

Subcontracting – 3!

•  Redefinition is like subcontracting!

•  To validate a subcontract requires a theorem prover for
the general case  
!

   and!

•  This is inefficient so we provide an approximation	

→α βγ δ→

22-23	
© Gunnar Gotshalks!

Subcontracting – 4!

•  Redefinition is like subcontracting!

•  To validate a subcontract requires a theorem prover for
the general case  
 !

   	
 	
and!

•  This is inefficient so we provide an approximation based
on the following!

	
 	
 	
 (or) !
>  Weaker precondition is to accept or !

	
 	
 (and)	

>  Stronger postcondition is to accept and 	

→α βγ δ→

→α γ

β δ →
α γ

β

α

β δ

22-24	
© Gunnar Gotshalks!

Subcontracting – 5!

•  Language support!
» When redefining do not use require and ensure  
!

»  Use require else !
	
 is or'ed with – the inherited precondition 
	

»  Use ensure then !
	
 is and'ed with – the inherited postcondition!

α

β

γ

δ

γ

δ

22-25	
© Gunnar Gotshalks!

Subcontracting example!

invert (epsilon : REAL) -- Invert matrix with precision epsilon!
 require else epsilon >= 10^(– 20)!
 ...!
 ensure then abs ((Current * inverse) – Identity) <= (epsilon / 2)!
end !

invert (epsilon : REAL) -- Invert matrix with precision epsilon!
 require epsilon >= 10^(– 6)!
 ...!
 ensure abs ((Current * inverse) – Identity) <= epsilon!
end !

Original definition!

Redefinition!

22-26	
© Gunnar Gotshalks!

Assertion Redeclaration Rule!

•  In the redeclared version of a routine it is not permitted to
use a require or an ensure clause. !

22-27	
© Gunnar Gotshalks!

Assertion Redeclaration Rule – 2!

•  In the redeclared version of a routine it is not permitted to
use a require or an ensure clause. Instead you may:!
»  Use a clause introduced by require else to be or'ed with

the original precondition!

22-28	
© Gunnar Gotshalks!

Assertion Redeclaration Rule – 3!

•  In the redeclared version of a routine it is not permitted to
use a require or an ensure clause. Instead you may:!
»  Use a clause introduced by require else to be or'ed with

the original precondition!
»  Use a clause introduced by ensure then to be and'ed

with the original postcondition!

22-29	
© Gunnar Gotshalks!

Assertion Redeclaration Rule – 4!

•  In the redeclared version of a routine it is not permitted to
use a require or an ensure clause. Instead you may:!
»  Use a clause introduced by require else to be or'ed with

the original precondition!
»  Use a clause introduced by ensure then to be and'ed

with the original postcondition!

•  In the absence of such a clause the original is retained!

22-30	
© Gunnar Gotshalks!

Assertion Redeclaration Rule – 5!

•  In the redeclared version of a routine it is not permitted to
use a require or an ensure clause. Instead you may:!
»  Use a clause introduced by require else to be or'ed with

the original precondition!
»  Use a clause introduced by ensure then to be and'ed

with the original postcondition!

•  In the absence of such a clause the original is retained!

•  The lazy evaluation (non-strict) form of or else and and
then are used!

22-31	
© Gunnar Gotshalks!

Apparent Precondition Strengthening!

•  Consider the case of general containers that have no
bounds on capacity!
!List implementation!

22-32	
© Gunnar Gotshalks!

Apparent Precondition Strengthening – 2!

•  Consider the case of general containers that have no
bounds on capacity!
!List implementation!

•  Inherit from List but have a bounded capacity container!
!Array implementation!

22-33	
© Gunnar Gotshalks!

Apparent Precondition Strengthening – 3!

•  Consider the case of general containers that have no
bounds on capacity!
!List implementation!

•  Inherit from List but have a bounded capacity container!
!Array implementation!

•  It looks like original has no restrictions when using add but
refinement has restrictions!

>  cannot add when full!

22-34	
© Gunnar Gotshalks!

Apparent Precondition Strengthening – 4 !

•  Actually have the following in the unbounded container!
!require not full!

>  With full defined as returning false!

22-35	
© Gunnar Gotshalks!

Apparent Precondition Strengthening – 5 !

•  Actually have the following in the unbounded container!
!require not full!

>  With full defined as returning false!

•  In child redefine!
full : BOOLEAN do Result := (count = Capacity) end!

22-36	
© Gunnar Gotshalks!

Apparent Precondition Strengthening – 6 !

•  Actually have the following in the unbounded container!
!require not full!

>  With full defined as returning false!

•  In child define!
full : BOOLEAN do Result := (count = Capacity) end!

•  In client have!
»  if not container.full then container.add(...) end!

22-37	
© Gunnar Gotshalks!

Apparent Precondition Strengthening – 7!

•  Actually have the following in the unbounded container!
!require not full!

>  With full defined as returning false!

•  In child define!
full : BOOLEAN do Result := (count = Capacity) end!

•  In client have!
»  if not container.full then container.add(...) end!

•  No changes and no surprises in the client!

22-38	
© Gunnar Gotshalks!

Apparent Precondition Strengthening – 8!

•  Actually have the following in the unbounded container!
!require not full!

>  With full defined as returning false!

•  In child define!
full : BOOLEAN do Result := (count = Capacity) end!

•  In client have!
»  if not container.full then container.add(...) end!

•  No changes and no surprises in the client!

•  Use abstract preconditions!

22-39	
© Gunnar Gotshalks!

Redefining a function into an attribute!

•  Small problem here!
»  Precondition becomes the weaker True as the value can

be accessed at any time!

»  But attributes do not have a postcondition!
>  The postcondition is added to the class invariant!
>  Thereby ensuring the contract still holds!

foo : INTEGER!
 require xyz > 0!
 ...!
 ensure Result = k + 1!
end!

foo : INTEGER!
 ...!
 invariant!
 foo = k + 1!
end!

22-40	
© Gunnar Gotshalks!

On Style!

»  Functions without arguments could be attributes!
»  Could have postcondition or use class invariants!

>  class invariants are the preferred style!

