
21-1!© Gunnar Gotshalks!

Multiple & Repeated!
Inheritance!

21-2!© Gunnar Gotshalks!

Multiple Inheritance – Example!

•  Combining two abstractions into one!
»  COMPARABLE and NUMERIC are both useful

abstractions!
>  Some abstractions make use of both while others do

not!

COMPARABLE! NUMERIC!

STRING! INTEGER! COMPLEX!

21-3!© Gunnar Gotshalks!

Repeated Inheritance – Example!

UNIVERSITY_!
PERSON!

TEACHER! STUDENT!

TEACHING_!
ASSISTANT!

•  Ancestor used in multiple paths to descendant!

21-4!© Gunnar Gotshalks!

Inheritance Types!

•  Implementation – abstraction that combines two
implementations!
»  ARRAY_STACK is both a STACK and and ARRAY!

•  Structural – abstraction that combines two structures!
»  HISTORY and STORABLE!

21-5!© Gunnar Gotshalks!

Eiffel Global Inheritance Structure!

GENERAL!

ANY!

NONE!

Customize ANY!
to have localized!
global features &!
invariants!

GENERAL has all!
Eiffel global features!
& invariants!

21-6!© Gunnar Gotshalks!

Feature Renaming!

•  Multiple & repeated inheritance lead to name clashes!

21-7!© Gunnar Gotshalks!

Feature Renaming – 2!

•  Multiple & repeated inheritance lead to name clashes!
» What if two parents use the same name for a feature?!

21-8!© Gunnar Gotshalks!

Feature Renaming – 3!

•  Multiple & repeated inheritance lead to name clashes!
» What if two parents use the same name for a feature?!

>  A common occurrence since good names are reused!

21-9!© Gunnar Gotshalks!

Feature Renaming – 4!

•  Multiple & repeated inheritance lead to name clashes!
» What if two parents use the same name for a feature?!

>  A common occurrence since good names are reused!

»  How can the child refer to the appropriate feature?!

21-10!© Gunnar Gotshalks!

Feature Renaming – 5!

•  Multiple & repeated inheritance lead to name clashes!
» What if two parents use the same name for a feature?!

>  A common occurrence since good names are reused!

»  How can the child refer to the appropriate feature?!
>  Rename one of the features – give it an alias!

21-11!© Gunnar Gotshalks!

Feature Renaming – 6!

•  Multiple & repeated inheritance lead to name clashes!
» What if two parents use the same name for a feature?!

>  A common occurrence since good names are reused!

»  How can the child refer to the appropriate feature?!
>  Rename one of the features – give it an alias!
>  Do not rely on overloading, not enough variation!

–  Overloading - distinguishes features by argument type and
count!

21-12!© Gunnar Gotshalks!

Example Renaming!

•  Suppose LONDON and LOS_ANGELES both have the
feature foo!

•  Then define TORONTO as follows!

class TORONTO inherit!
 LONDON!

!rename foo as fog!
 !redefine fog end!
 LOS_ANGELES!

!rename foo as smog!
 !redefine smog end!
feature!
 ...!
end!

21-13!© Gunnar Gotshalks!

Renaming Effects!

ldon : LONDON ; la : LOS_ANGELES ; tor : TORONTO !

Valid – even after polymorphic assignment 
!
ldon.foo ; tor.fog!
la.foo ; tor.smog!

Invalid!
!
ldon.fog ; ldon.smog!
la.fog ; la.smog!
tor.foo!

21-14!© Gunnar Gotshalks!

Redeclaration & Renaming!

•  Redeclaration!
»  Keeps the name, changes the semantics!
!

21-15!© Gunnar Gotshalks!

Redeclaration & Renaming – 2!

•  Redeclaration!
»  Keeps the name, changes the semantics!

•  Renaming!
»  Keeps the semantics changes the name!

21-16!© Gunnar Gotshalks!

Redeclaration & Renaming – 3!

•  Redeclaration!
»  Keeps the name, changes the semantics!

•  Renaming!
»  Keeps the semantics changes the name!

•  Can both rename and redefine!
»  Rename first!
»  Use new name when redefining!

21-17!© Gunnar Gotshalks!

Redeclaration & Renaming – 2!

•  Renaming can be useful to change the name to a more
common one for the abstraction  
!
»  TO !push & pop (STACK) 
 
FROM !add and remove (CONTAINER)!

21-18!© Gunnar Gotshalks!

Repeated Inheritance!

•  Indirect!
»  class B inherit A  

class C inherit A  
class D inherit B C  
 
!

•  Direct!
»  class B  

 inherit  
 A 
 A!

A

B!

D!

C!

A

B!

21-19!© Gunnar Gotshalks!

Problems!

 DRIVER!
age pass_birthday!
address pay_fee!
violation_count!

FRENCH_!
DRIVER!

CANADIAN_!
DRIVER!

FRENCH_CANANDIAN_DRIVER!

21-20!© Gunnar Gotshalks!

Problems – 2!

What about age?!
It is the same along!
both paths?!
!
!

 DRIVER!
age pass_birthday!
address pay_fee!
violation_count!

FRENCH_!
DRIVER!

CANADIAN_!
DRIVER!

FRENCH_CANANDIAN_DRIVER!

21-21!© Gunnar Gotshalks!

Problems – 3!

What about age?!
It is the same along!
both paths ?!
!
DO NOT rename!!
!
Only rename if!
inheriting different!
but identically!
named features!
!
Have a single!
shared feature!
!

 DRIVER!
age pass_birthday!
address pay_fee!
violation_count!

FRENCH_!
DRIVER!

CANADIAN_!
DRIVER!

FRENCH_CANANDIAN_DRIVER!

21-22!© Gunnar Gotshalks!

Problems – 4!

What about!
violation_count,!
address, pay_fee?!
!

 DRIVER!
age pass_birthday!
address pay_fee!
violation_count!

FRENCH_!
DRIVER!

CANADIAN_!
DRIVER!

FRENCH_CANANDIAN_DRIVER!

21-23!© Gunnar Gotshalks!

Problems – 5!

What about!
violation_count,!
address, pay_fee?!
!
Sharing is not always!
 appropriate. These !
are different along!
each path.!
!
Need to replicate!
for each driver!
!
!

 DRIVER!
age pass_birthday!
address pay_fee!
violation_count!

FRENCH_!
DRIVER!

CANADIAN_!
DRIVER!

FRENCH_CANANDIAN_DRIVER!

21-24!© Gunnar Gotshalks!

Repeated Inheritance Rule!

!

!

Versions of a repeatedly inherited feature inherited
under the same name represent a single feature!

21-25!© Gunnar Gotshalks!

Repeated Inheritance Rule – 2!

!

!

Versions of a repeatedly inherited feature inherited
under the same name represent a single feature!

Versions inherited under different names represent
separate features, each replicated from the original in
the common ancestor!

21-26!© Gunnar Gotshalks!

Repeated Inheritance Rule – 3!

!

!
>  Use rename to get replication!

–  rename pay_fee as pay_french_fee!

•  The rule applies to routines as well as attributes!

Versions of a repeatedly inherited feature inherited
under the same name represent a single feature!

Versions inherited under different names represent
separate features, each replicated from the original in
the common ancestor!

21-27!© Gunnar Gotshalks!

Final Name!

•  Definition!
»  The final name of a feature in a class is!

>  For an immediate feature, the name under which it is
declared!

21-28!© Gunnar Gotshalks!

Final Name – 2!

•  Definition!
»  The final name of a feature in a class is!

>  For an immediate feature, the name under which it is
declared!

>  For an inherited feature that is not renamed, its final
name is (recursively) in the parent from which it is
inherited!

21-29!© Gunnar Gotshalks!

Final Name – 3!

•  Definition!
»  The final name of a feature in a class is!

>  For an immediate feature, the name under which it is
declared!

>  For an inherited feature that is not renamed, its final name
is (recursively) in the parent from which it is inherited!

>  For a renamed feature, the name resulting from the
renaming!

21-30!© Gunnar Gotshalks!

Single Name Rule!

Two different effective features of a class !
may not have the same final name!

21-31!© Gunnar Gotshalks!

Conflict Resolution – Must Rename!

•  If there are incompatible signatures or semantics!
»  Rename g in D!

>  Either from B or C or both!

D!

B!g! C! g!

21-32!© Gunnar Gotshalks!

Conflict Resolution – Joining!

•  Different names!
»  Have compatible signatures and semantics!
»  Join the solutions!

class D inherit!
 B!
 C rename g as f!
 undefine f end!
....!

D!

B! C!
f! g!

21-33!© Gunnar Gotshalks!

Conflicting Redefinition!

•  In D have two different definitions of f!
»  From B and from A through C!

A

B!

D!

C!

f!

f!++!

21-34!© Gunnar Gotshalks!

Conflicting Redefinition – 2!

•  In D have two different definitions of f!
»  From B and from A through C!

•  Consider under!
»  sharing!
»  replication !

A

B!

D!

C!

f!

f!++!

21-35!© Gunnar Gotshalks!

Conflict Resolution – Sharing!

•  Inherit under same name!
»  one version is deferred other is

effective!
>  No problem – single name rule!

»  both versions effective but redefined
in D!

>  No problem – produce one
redefined version!

A

B!

D!

C!

f!

f!++!

»  both effective, do not want redefinition!
>  Problem – name clash, must rename, get replication!

21-36!© Gunnar Gotshalks!

Conflict Resolution – Sharing – 2!

•  Another solution!
»  Make one of the versions

deferred – Other takes over!

class D inherit!
 B!
 C undefine f end!
....!

A

B!

D!

C!

f!

f!++!

21-37!© Gunnar Gotshalks!

Conflict Resolution – Replication!

•  Suppose a1 := instance of D!
»  Then a1.f is ambiguous!

>  could be either f or bf!

•  Programmer must select the
version!

A

B!

D!

C!

f!

bf!++!
f !

class D inherit!
 B!
 C select f end!
....!

class D inherit!
 B select bf end!
 C!
....!

21-38!© Gunnar Gotshalks!

Select Rule!

»  Use select all if that is desired!

A class that inherits two or more different effective
versions of a feature from a repeated ancestor and
does not redefine them both, must include exactly
one of them in a select clause!

21-39!© Gunnar Gotshalks!

Genericity with Repeated Inheritance!

 
 
 
!

!

!

!

!
»  Ambiguity as to the type for f in B.!
»  If genericity is needed, use renaming to get replication!

class A[G] feature!
 f : G!
end!

class B inherit!
 A [INTEGER]!
 A [REAL]!
end!

The type of any feature that is shared under the
repeated inheritance rule, and the type of any of its
arguments if it is a routine, may not be a generic
parameter of the class from which the feature is
repeatedly inherited!

21-40!© Gunnar Gotshalks!

Name Clash Definition!

•  In a class obtained through multiple inheritance, a name
clash occurs when two features inherited from different
parents have the same final name!

21-41!© Gunnar Gotshalks!

Name Clash Rule!

A name clash makes the class invalid except in any of the
following cases!

»  The two features are inherited from a common ancestor
and none has been redefined from the version in that
ancestor  
!

»  Both features have compatible signatures and at least
one of them is inherited in deferred form  
!

»  Both features have compatible signatures and they are
both redefined in the class!
!

21-42!© Gunnar Gotshalks!

Summary of Adaptation Clauses!

•  Eiffel adaptation clauses are in the following order.!
class B!
!inherit A!
! !rename f1 as new_f1, f2 as new_f2, f3 as new_f3!
! !export {A, B} new_f1, f4!
! !undefine new_f3, f6!
! redefine new_f2, f5!
! !select new_f2, f7!
!end!

