
16-1!© Gunnar Gotshalks!

Exceptions!
!

When the Contract is Broken!

16-2!© Gunnar Gotshalks!

Definitions!

•  A routine call succeeds if it terminates its execution in a
state satisfying its contract 
!

•  A routine call fails if it terminates its execution in a state
not satisfying its contract 
!

•  An exception is a run-time event that may cause a routine
call to fail!
»  Every failure is caused by an exception but not every

exception causes a failure!

16-3!© Gunnar Gotshalks!

Exception Causes!

•  Try a.f(...) and a is void!

•  Calling a routine that fails!

•  Finding assertions fail!
»  preconditions, postconditions, class invariants, check!

»  loop invariant goes false, variant does not decrease!

•  A hardware problem (divide by 0), or operating system
error!

•  Trigger an exception explicitly!

16-4!© Gunnar Gotshalks!

Failures and Exceptions!

•  A routine fails if and only if!
An exception occurs during the execution of the routine!

! ! !AND!

The routine does not recover from the exception!

•  A failure of a routine causes an exception in its caller!

!

16-5!© Gunnar Gotshalks!

What Not to Do – C example!

signal (exception_code , exception_handler)!
Notify OS that when exception_code occurs, pass
control to exception_handler!

•  Expected response is!
»  exception_code occurs!
»  exception_handler invoked!
»  return to point of exception & continue!

•  No guarantee!
»  return to point of exception!
»  problem has been addressed!

16-6!© Gunnar Gotshalks!

What should be done!

•  Correct the situation!
»  Perhaps modify initial state to improve it!

>  Internet connection fails, Network chooses another
route!

»  Rerun the routine!

16-7!© Gunnar Gotshalks!

What should be in C!

•  Use setjmp to save a restart location!

•  Use longjmp to return!
»  Even over intervening subprogram calls!

»  Pops the runtime stack back to the setjmp location!

•  This guarantees return to the point of exception!
»  But still does not guarantee problem has been

addressed!

16-8!© Gunnar Gotshalks!

What Not to Do – Ada Example!

•  What is wrong with this response?!

sqrt (n : REAL) return REAL is  
 begin  
 if x < 0.0 then raise Negative  
 else normal_computation!
 exception when Negative => put ("Negative") return 
 when others => ... return!
 end!

16-9!© Gunnar Gotshalks!

What Not to Do – Ada Example – 2!

•  What is wrong with this response?!
»  Printed message does not solve the problem!

»  Caller not notified of the problem!

sqrt (n : REAL) return REAL is  
 begin  
 if x < 0.0 then raise Negative  
 else normal_computation!
 exception when Negative => put ("Negative") return 
 when others => ... return!
 end!

16-10!© Gunnar Gotshalks!

What should be done in Ada!

•  Follow the Ada exception rule!
The execution of any Ada exception handler should end 
by either executing a raise instruction or retrying the
enclosing program unit !

16-11!© Gunnar Gotshalks!

Ignore false alarms!

•  Exception mechanism should not be used in an event
loop!
»  Resizing of a window!

>  Not an exception, it is a normal task.!

16-12!© Gunnar Gotshalks!

Exception Handling Principle!

•  Only two responses!
»  Retrying!

»  Failure – Organized panic!

16-13!© Gunnar Gotshalks!

Exception Handling Principle – 2!

•  Only two responses!
»  Retrying!

>  Attempt to change the conditions that led to the
exception and execute the routine again from the
beginning!

»  Failure – Organized panic!
>  Clean up the environment (reestablish invariants)!
>  Terminate the routine!
>  Report failure to the caller!

16-14!© Gunnar Gotshalks!

On Retrying!

•  Best response is routine succeeds on retry!
»  Caller is unaffected; is not disturbed 
!

•  Sometimes nothing to do but retry as external conditions
may have changed!
»  Busy signal when attempting to phone someone  
!

•  Could change initial conditions – within parameters of
invariants 
!

•  Could try different algorithm!

16-15!© Gunnar Gotshalks!

On Failure!

•  Make sure the caller is notified!
»  Give up – panic mode 
!

•  Restore consistent state!
»  Be organized!

»  Change state so invariants are correct!

16-16!© Gunnar Gotshalks!

Rescue & Retry!

•  The rescue clause is invoked when an exception occurs!

routine!
 require preconditions!
 local variables!
 do body!
 ensure postconditions!
 rescue -- no rescue, routine fails  
 if then retry -- rerun routine from the beginning  
 else ! ! -- no retry, routine fails!
end!

16-17!© Gunnar Gotshalks!

Exception History!

•  If no routine in the call chain is able to succeed when an
exception is raised!
»  System finally gets control!
»  Prints history of propagating the exception up to the

root!
>  List!

–  Object, Class, Routine	

–  Nature of exception 	

•  void reference	

•  assertion failure – use assertion labels	

•  routine failure	

–  Effect	

•  fail or retry	

16-18!© Gunnar Gotshalks!

Example 1 – Keep Retrying!

!
get_integer!
 do!
 print ("Enter an integer: ")!
 read_one_integer!
 rescue 
 retry!
 
end!

16-19!© Gunnar Gotshalks!

Example 2 – Maximum retries!

try_to_get_integer!
 local attempts : INTEGER!
 do!
 if attempts < Max_attempts then 
 print ("Enter an integer") 
 read_one_integer ; integer_read := True  
 else 
 integer_read := False  
 end!

rescue 
 attempts := attempts + 1 ; retry  
 end!

16-20!© Gunnar Gotshalks!

Example 2 – Maximum retries – 2!

get_integer!
 do!
 try_to_get_integer!
 if integer_read then 
 n := last_integer  
 else 
 ... Do next level of interaction ... 
 end!

end!

16-21!© Gunnar Gotshalks!

Example 3 – Hardware or OS problem!

-- Precondition fails but only know after computation!
quasi_inverse (x : REAL) : REAL -- 1 / x if possible!
 local division_tried : BOOLEAN!
 do!
 if not division_tried then 
 Result := 1 / x  
 end!
 rescue 
 division_tried := True  
 retry!
 end!

Result = 0 if x is too small!
and causes underflow!

16-22!© Gunnar Gotshalks!

Example 4 – N version Programming !

do_task ! !-- try several algorithms!
 local attempts : INTEGER!
 do!
 if attempts = 0 then do_version_1  
 elseif attempts = 1 then do_version_2  
 elseif attempts = 2 then do_version_3 
 end!
 rescue 
 attempts := attempts + 1  
 if attempts < 3 then reset_state ; retry  
 else restore_invariant 
 end!
end!

16-23!© Gunnar Gotshalks!

Correctness of the Rescue Clause!

•  Formal rule for class correctness stated!
   For every exported routine R and any set of valid

arguments A R  
!

   { pre R (A R) and inv } Body R { post R (A R) and inv }!

•  Correctness rule for failure inducing rescue clauses 
!
   { True } Rescue R { inv }!

•  Precondition for CE is stronger than CF, and its
postcondition is also stronger.!
»  CF does not have to ensure the contract!

CE!

CF!

16-24!© Gunnar Gotshalks!

Correctness of the Rescue Clause – 2!

•  Correctness rule for retry inducing rescue clauses 
!
   { True } Retry R { pre R and inv }  
!

•  Precondition for CE is stronger than CR, and its
postcondition is also stronger.!

CR!

16-25!© Gunnar Gotshalks!

When there is no Rescue Clause!

•  Every routine has the following by default!
   rescue default_rescue!

>  default_rescue does nothing but can be overridden 
!

>  Creation routines establish the invariant. May be
possible to use creation routines in writing a
default_rescue!

16-26!© Gunnar Gotshalks!

EXCEPTIONS Class!

•  Can use the EXCEPTIONS class to give exception objects!
»  Inherit from EXCEPTIONS and then customize!

»  Can know the nature of the last exception!

»  Can raise exceptions!

16-27!© Gunnar Gotshalks!

Exception Simplicity Principle!

!
All processing done in a rescue clause
should remain simple, and focused on the
sole goal of bringing the recipient object
back to a stable state, and, if possible,
permitting a retry.!

