Abstract Data Types Documentation

Documentation

- Users are only interested in the properties of the ADT
- Programmers and designers require all the information which a user needs AND all information pertaining to the design and implementation
- Useful to think of the documentation as being an annotated definition of an abstract data type

Documentation Table of Contents

- Cover page, table of contents and abstract
- Document introduction
 - » Informal overview of the facilities provided. Help readers determine if this is what they need
- Data type objects
 - **»** Description of all the objects include diagrams
 - » Split into
 - > Imported which predefined objects are used
 - > Exported for others to use
 - > Hidden used in the implementation

- Operations
 - » Give
 - > Signature
 - > Informal description
 - > pre- and post- conditions
 - » Use natural language, mathematics, diagrams whatever best gets the meaning across.
 - » Be simple, complete, clear, precise, concise as possible

- Example partial axiomatic description of bank accounts
 - » The operation signatures only no pre- post- given

new : [] \rightarrow account

- Create an account with a zero balance
- withdraw : account X amount \rightarrow account
 - Remove amount from account
- deposit : account X amount \rightarrow account
 - Add amount to account
- **balance** : account \rightarrow amount
 - What is the amount in the account?

- Operation interaction
 - » Previous section describes operations in isolation
 - » Provide better understanding by showing properties when operations are used in combination
 - » Common descriptive method in use is axiomatic
 - > List of axioms or statements which must be true if the ADT is implemented and used correctly

- Axioms about the data type
 - » Axiom 1: New account has a balance of zero dollars balance(new) = 0
 - » Axiom 2: Cannot withdraw from a new account withdraw(new, amt) = error
 - » Axiom 3: Deposit amt and then withdraw amt with no intervening operations the balance does not change

» Axiom 4: Only withdraw if the balance is ≥ the amount to withdraw. The amount is deducted from the balance

 $balance(acct) < amt \rightarrow withdraw(acct, amt) = error$

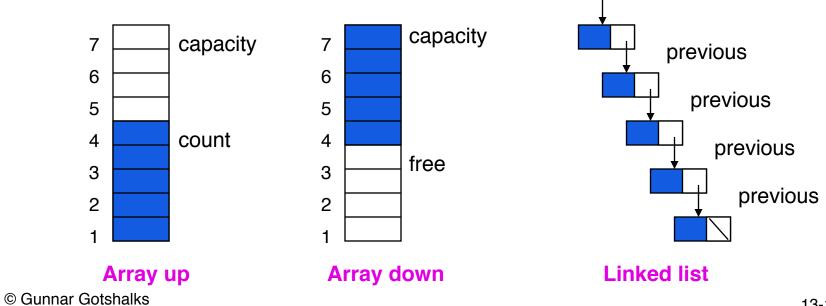
balance(acct) \geq amt \rightarrow balance(withdraw(acct, amt)) = balance(acct) - amt

- How to use the ADT
 - » Tutorial guide on use. Dwell on nuances. Describe various examples
- Dictionary
 - » Define new terminology or domain specific jargon that implementers or users may not know
- Undesired Event Dictionary
 - » Description of possible errors which can occur
 - » Contains warnings
 - » How to recognize error situations
 - **»** How to recover from error situations
 - » What to do if recovery is impossible

- ADT generation parameters
 - » Describe how instances and variations can be implemented from this generic data type
 - > How to change base types
 - > How to change amount of storage for a customer name
 - » Describe changes that can be made that will not violate assumptions and specifications. Design for a class of similar data types
 - » State what programming tools can be used to modify the implementation

- Design issues
 - » What were the design choices and why were the actual choices chosen. Help guide future changes to keep in the spirit of the original
 - > Why was fixed memory allocation used instead of dynamic?
 - > Why were size limits imposed?
 - > Why was a particular data structure chosen?

- Implementation notes
 - » Designer may have information of use to the implementer. Know properties that can improve implementation
- List of assumptions those assumptions that
 - » Cannot be violated
 - » Not implicit in the context
 - » Global
 - » Note: cannot state all assumptions so state those that
 - > Are most important
 - > Most likely to cause problems if violated
 - > Are not easily detected as causing problems until a long time later


TOC - 10

- Normal use assumptions
 - » Information available from the ADT
 - » Information that must be supplied to the ADT
 - » Events reported by the ADT
 - » Tasks that can be performed by the ADT
 - » Operating states of the ADT and how they affect the Information obtained from and supplied to the ADT
 - » Failure states of the ADT and how they affect the information obtained from and supplied to the ADT

- Incorrect use assumptions
 - » Associated with run time undesired events
 - » What may or may not happen if the production version has undesired event handling code removed to speed up the system
- Program source text
 - » If the source test is small may be included with the description of the operations
- Facilities index
 - » A quick look up reference of all programs, modules, operations, objects and terms defined

Minimal Documentation

- Objects
 - » Types Diagrams where possible
- Example stack
 - » Imported none
 - » Exported STACK [G]
 - **» Hidden implementation**

last

Minimal Documentation – 2

- Operations example for a stack
 - » Signatures, pre & post conditions

> push : STACK [G] x G \rightarrow STACK [G]

- require true ensure result = x ^ s & count = old count + 1

> pop : STACK [G] \rightarrow STACK [G]

- require not empty (s)
ensure result = s' & count = old count - 1

> top : STACK [G] \rightarrow G

- require not empty (s) ensure result = s_1

Minimal Documentation – 3

• Operations – example for a stack cont'd

> empty : STACK [G] \rightarrow BOOLEAN

- require true
ensure result = (count = 0)

```
> new : [ ] \rightarrow STACK [ G ]
```

- require true
ensure result = STACK [G] ∧ count = 0

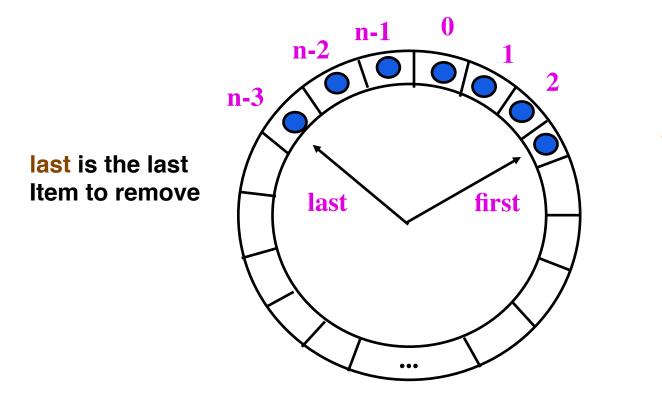
- » Note: often "require true" is not written but is assumed
- » It is better to write it as then one can wonder if it was left out by accident
 - > "nothing" is often represented with a special symbol. e.g. nil , $\lambda, \, \epsilon, \Delta$

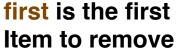
Minimal Documentation – 4

- Operations example for a stack cont'd
 - » Axioms

is read as
 "it is the case that"

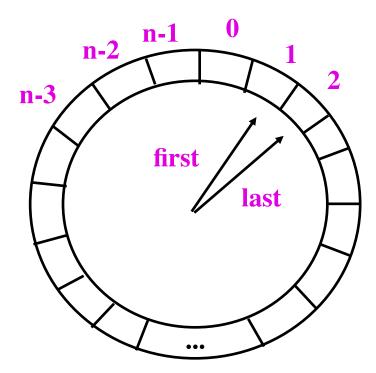
» Alternately can use natural language

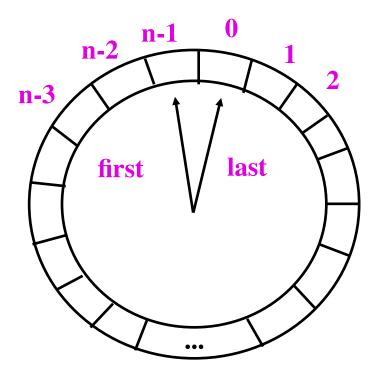

> forall x : G, s : STACK [G } :: top (push (s, x)) = x and pop (push (s, x)) = s and empty (new) and not empty (push (s, x))


ADT Invariants

- Conditions that must be true after the execution of any method in the the class
- The conditions that hold, at all times, among the objects in an instance of the ADT
 - » More on this when we discuss design by contract

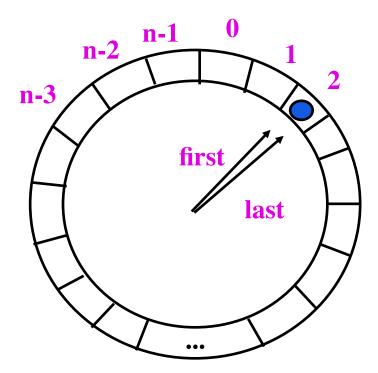
Example Circular Queue


isEmpty \rightarrow length = 0 \wedge (last-1) mod Size = first isFull \rightarrow length = Size - 1 not isFull \rightarrow length = (Size + first - last + 1) mod Size


Empty Circular Queue

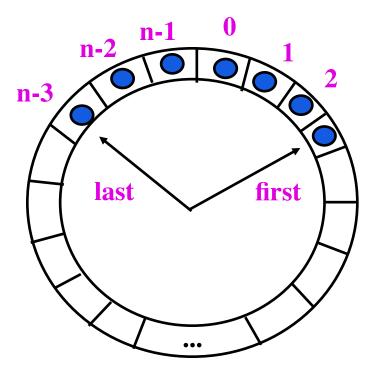
isEmpty \rightarrow length = 0 \wedge (last-1) mod Size = first isFull \rightarrow length = Size - 1 not isFull \rightarrow length = (Size + first - last + 1) mod Size

Empty Circular Queue – 2


isEmpty \rightarrow length = 0 \land (last-1) mod Size = first isFull \rightarrow length = Size - 1 not isFull \rightarrow length = (Size + first - last + 1) mod Size

length = $(n + (n-1) - 0 + 1) \mod n$ = $(2n + 0) \mod n$ = 0

Length 1 Circular Queue


isEmpty \rightarrow length = 0 \wedge (last-1) mod Size = first isFull \rightarrow length = Size - 1 not isFull \rightarrow length = (Size + first - last + 1) mod Size


```
length = (n + 2 - 2 + 1) mod n
= ( n + 1 ) mod n
= 1
```

Longer length Circular Queue

length = (Size + first - last + 1) mod Size

