
13-1!© Gunnar Gotshalks!

Abstract Data Types!
Documentation!

!

13-2!© Gunnar Gotshalks!

Documentation!

•  Users are only interested in the properties of the ADT!

•  Programmers and designers require all the information
which a user needs AND all information pertaining to the
design and implementation!

•  Useful to think of the documentation as being an
annotated definition of an abstract data type!

13-3!© Gunnar Gotshalks!

Documentation Table of Contents !

•  Cover page, table of contents and abstract!

•  Document introduction!

»  Informal overview of the facilities provided. Help
readers determine if this is what they need!

•  Data type objects!

»  Description of all the objects – include diagrams!
»  Split into!

>  Imported – which predefined objects are used!

>  Exported – for others to use!

>  Hidden – used in the implementation!

13-4!© Gunnar Gotshalks!

Operations TOC – 2!

•  Operations!

»  Give!

>  Signature!

>  Informal description!

>  pre- and post- conditions  
!

»  Use natural language, mathematics, diagrams –
whatever best gets the meaning across.!

»  Be simple, complete, clear, precise, concise as possible!

13-5!© Gunnar Gotshalks!

Operations TOC – 3!

•  Example – partial axiomatic description of bank accounts!

»  The operation signatures only – no pre- post- given!

   new ! : [] account!

–  Create an account with a zero balance	

   withdraw : account X amount account!

–  Remove amount from account	

   deposit : account X amount account!

–  Add amount to account	

   balance : account amount!

–  What is the amount in the account?	

→

→

→

→

13-6!© Gunnar Gotshalks!

Operations TOC – 4!

•  Operation interaction!

»  Previous section describes operations in isolation!

»  Provide better understanding by showing properties
when operations are used in combination!

»  Common descriptive method in use is axiomatic!

>  List of axioms or statements which must be true if
the ADT is implemented and used correctly!

13-7!© Gunnar Gotshalks!

Operations TOC – 5!

•  Axioms about the data type!
»  Axiom 1: New account has a balance of zero dollars!

   balance(new) = 0	

»  Axiom 2: Cannot withdraw from a new account!
   withdraw(new, amt) = error	

»  Axiom 3: Deposit amt and then withdraw amt with no
intervening operations the balance does not change!

   balance(withdraw(deposit(acct, amt) , amt)���
 = balance(acct)	

»  Axiom 4: Only withdraw if the balance is ≥ the amount to
withdraw. The amount is deducted from the balance!

   balance(acct) < amt withdraw(acct, amt) = error	

   balance(acct) ≥ amt ���

 balance(withdraw(acct, amt)) = balance(acct) – amt	

→
→

13-8!© Gunnar Gotshalks!

TOC – 6!

•  How to use the ADT!
»  Tutorial guide on use. Dwell on nuances. Describe

various examples!

•  Dictionary!
»  Define new terminology or domain specific jargon that

implementers or users may not know!

•  Undesired Event Dictionary!
»  Description of possible errors which can occur!
»  Contains warnings!
»  How to recognize error situations!
»  How to recover from error situations!
» What to do if recovery is impossible!

13-9!© Gunnar Gotshalks!

TOC – 7!

•  ADT generation parameters!

»  Describe how instances and variations can be
implemented from this generic data type!

>  How to change base types!

>  How to change amount of storage for a customer
name!

»  Describe changes that can be made that will not violate
assumptions and specifications. Design for a class of
similar data types!

»  State what programming tools can be used to modify
the implementation!

13-10!© Gunnar Gotshalks!

TOC – 8!

•  Design issues!

» What were the design choices and why were the actual
choices chosen. Help guide future changes to keep in
the spirit of the original!

>  Why was fixed memory allocation used instead of
dynamic?!

>  Why were size limits imposed?!

>  Why was a particular data structure chosen?!

13-11!© Gunnar Gotshalks!

TOC – 9!

•  Implementation notes!
»  Designer may have information of use to the

implementer. Know properties that can improve
implementation!

•  List of assumptions – those assumptions that!
»  Cannot be violated!
»  Not implicit in the context!
»  Global!
»  Note: cannot state all assumptions so state those that!

>  Are most important!
>  Most likely to cause problems if violated!
>  Are not easily detected as causing problems until a

long time later!

13-12!© Gunnar Gotshalks!

TOC – 10!

•  Normal use assumptions!

»  Information available from the ADT!

»  Information that must be supplied to the ADT!

»  Events reported by the ADT!

»  Tasks that can be performed by the ADT!

»  Operating states of the ADT and how they affect the
Information obtained from and supplied to the ADT!

»  Failure states of the ADT and how they affect the
information obtained from and supplied to the ADT!

13-13!© Gunnar Gotshalks!

TOC – 11!

•  Incorrect use assumptions!

»  Associated with run time undesired events!

» What may or may not happen if the production version
has undesired event handling code removed to speed
up the system!

•  Program source text!

»  If the source test is small may be included with the
description of the operations!

•  Facilities index!

»  A quick look up reference of all programs, modules,
operations, objects and terms defined!

13-14!© Gunnar Gotshalks!

Minimal Documentation !

•  Objects!

»  Types ! !Diagrams where possible!

•  Example – stack!
»  Imported – none!
»  Exported – STACK [G]!
»  Hidden – implementation!

1!
2!
3!
4!
5!
6!
7! capacity!

count!

1!
2!
3!
4!
5!
6!
7! capacity!

free!

Array up! Array down!

last!

previous!

previous!

previous!

previous!

Linked list!

13-15!© Gunnar Gotshalks!

Minimal Documentation – 2!

•  Operations – example for a stack!

»  Signatures, pre & post conditions!

>  push : STACK [G] x G STACK [G]!
–  require 	

true���

ensure 	

result = x ^ s & count = old count + 1���
	

>  pop : STACK [G] STACK [G]!
–  require 	

not empty (s)���

ensure 	

result = s' & count = old count - 1���
	

>  top : STACK [G] G!
–  require 	

not empty (s)���

ensure 	

result = s1	

→

→

→

13-16!© Gunnar Gotshalks!

Minimal Documentation – 3!

•  Operations – example for a stack cont'd!

>  empty : STACK [G] BOOLEAN!
–  require 	

true���

ensure 	

result = (count = 0)	

>  new : [] STACK [G]!
–  require 	

true���

ensure 	

result = STACK [G] count = 0	

»  Note: often "require true" is not written but is assumed!

»  It is better to write it as then one can wonder if it was left
out by accident!

>  "nothing" is often represented with a special symbol.
e.g. nil , λ , ε , ∆ 	

→

→

∧

13-17!© Gunnar Gotshalks!

Minimal Documentation – 4!

•  Operations – example for a stack cont'd!

»  Axioms!

>  x : G, s : STACK [G] •  
! top (push (s, x)) = x  
! pop (push (s, x)) = s  
! empty (new) 
! ~ empty (push (s, x)) 

!

»  Alternately can use natural language!

>  forall x : G, s : STACK [G } ::  
! top (push (s, x)) = x  
!and pop (push (s, x)) = s  
!and empty (new) 
!and not empty (push (s, x))!

• is read as!
 "it is the case that"!

∧
∧
∧

∀

13-18!© Gunnar Gotshalks!

ADT Invariants!

•  Conditions that must be true after the execution of any
method in the the class!

•  The conditions that hold, at all times, among the
objects in an instance of the ADT!
» More on this when we discuss design by contract!

13-19!© Gunnar Gotshalks!

Example Circular Queue!

0	

1	

2	

n-1	

n-2	

n-3	

...	

first	

last	

isEmpty length = 0 (last-1) mod Size = first !
isFull length = Size - 1!
not isFull length = (Size + first - last + 1) mod Size!

first is the first!
Item to remove!last is the last!

Item to remove!

→
→

→ ∧

13-20!© Gunnar Gotshalks!

Empty Circular Queue !

0	

1	

2	

n-1	

n-2	

n-3	

...	

first	

last	

length = (n + 1 - 2 + 1) mod n!
 = (n + 0) mod n!
 = 0!

isEmpty length = 0 (last-1) mod Size = first !
isFull length = Size - 1!
not isFull length = (Size + first - last + 1) mod Size!

∧

→
→

→

13-21!© Gunnar Gotshalks!

Empty Circular Queue – 2!

0	

1	

2	

n-1	

n-2	

n-3	

...	

first	

 last	

length = (n + (n-1) - 0 + 1) mod n!
 = (2n + 0) mod n!
 = 0!

isEmpty length = 0 (last-1) mod Size = first !
isFull length = Size - 1!
not isFull length = (Size + first - last + 1) mod Size!

∧

→
→

→

13-22!© Gunnar Gotshalks!

Length 1 Circular Queue!

0	

1	

2	

n-1	

n-2	

n-3	

...	

first	

last	

length = (n + 2 - 2 + 1) mod n!
 = (n + 1) mod n!
 = 1!

isEmpty length = 0 (last-1) mod Size = first !
isFull length = Size - 1!
not isFull length = (Size + first - last + 1) mod Size!

∧

→
→

→

13-23!© Gunnar Gotshalks!

Longer length Circular Queue!

 ! length = (Size + first - last + 1) mod Size!

length = (n + 3 - (n-3) + 1) mod n!
 = (7) mod n!
 = 7!

0	

1	

2	

n-1	

n-2	

n-3	

...	

first	

last	

