© Gunnar Gotshalks

Stepwise Refinement
Top Down Design

On Top Down Design

e Useful in creating a function or algorithm when the input
and output data structures correspond

» If the input and output data structures do not
correspond then one needs communicating processes
to correctly design an implementation

Program # function

e NOT USEFUL for designing programs

Real systems have no top

© Gunnar Gotshalks

On Mathematics

| saw a high wall and as | had a premonition of
an enigma, something that might be hidden
behind the wall, | climbed over it with some
difficulty On the other side | landed in a
wilderness and had to cut my way through with a
great effort until — by a circuitous route — | came
to the open gate, the open gate of mathematics.

M.C. Escher

© Gunnar Gotshalks

Escher — Circle Limit 1 (1958)

© Gunnar Gotshalks

Escher — Plane Filling 1 (1951)

© Gunnar Gotshalks

Escher Waterfall 1961

© Gunnar Gotshalks

Stepwise Refinement

e Also known as functional decomposition and top down
design

e Given an operation, there are only the following three
choices for refinement

» Sequence of sub-operations

> OP = OP1;0P2;...; OPn
» Choice of sub-operations

> OP = if COND then OP1 else OP2
» Loop over a sub-operation

> OP = OP1 while COND do OP2

© Gunnar Gotshalks

Stepwise Refinement

e |s an recursive process of applying one of the previous
three choices (with variations) to sub-operations until
program text can be written

© Gunnar Gotshalks 11-8

Stepwise Refinement Procedure

Problem
Op

Unrefined
Operations

an OP

v

—> EXists?

Done

Yes

v

— Can code? Add to program

OP1, OP2, ..., Opn
— OP = OP1;0P2;...; OPn

\ 4

COND, OP1, OP2

A\ 4

" OP = if COND then OP1 else OP2

COND, OP1, OP2

\ 4

— OP= OP1 while COND do OP2

© Gunnar Gotshalks

Sequence Questions

OP=0P1;0P2;..;0pn

Does the sequence of operations OP1 followed by OP2 followed
by ... followed by OPn accomplish the upper level operation OP

precondition OP — precondition OP1

postcondition OP1— precondition OP2
postcondition OP2 — precondition OP3

postcondition OPn-1— precondition OPn
postcondition Opn — postcondition OP

© Gunnar Gotshalks 11-10

Choice Questions

OP =if COND then OP1 else OP2
e Does the operation OP1 accomplish the operation OP when the
condition COND is true

COND —
precondition OP — precondition OP1

and postcondition OP1 — postcondition OP

e Does the operation OP2 accomplish the operation OP when the
condition COND is false

not COND —
precondition OP — precondition OP2

and postcondition OP2 — postcondition OP

© Gunnar Gotshalks 11-11

Loop Questions — 1 of 4

OP =-0- <+ Ask verification question - i -
OP1
—q—
while COND { OP2 -2- }
—3—

Let LI be a loop invariant, which must always be true after
OP1 is executed — except temporarily within OP2

© Gunnar Gotshalks 11-12

Loop Questions — 2 of 4

Question 0 — What is the LI?

» In general it is an extremely difficult question to answer.
It contains the essential difficulty in programming

» Fundamentally it is the following

Ll = totalWork = workToDo + workDone

© Gunnar Gotshalks 11-13

Loop Questions — 3 of 4

OP

while COND { OP2 —2- }
—3—

Question 1 — Is LI true after OP1?

precondition(OP) + execution(OP1) — LI

Question 2 — Is LI true after OP2?

(Llbefore A COND) + execution(OP2) — Llafter

© Gunnar Gotshalks

11-14

Loop Questions — 4 of 4

while COND { OP2 —2— }

> _3_

— Question 3a — Does the loop terminate?

Does COND eventually become false?

Question 3b — Is postcondition of OP true at loop end?

(LI A\ (not COND)) — postcondition OP

© Gunnar Gotshalks

11-15

Example Loop Design

e Consider a program loop which calculates the division of
positive integers.

» D is the divisorand D >0 Q
Q is the quotient D DV
R is the remainder
DV is the dividend and DV >0 R

e We are to compute Q and R from D and DV such that the
following is true.

O<R<D ADV=D*Q + R

© Gunnar Gotshalks 11-16

Loop Design — 1

e Question 0 — Find the loop invariant

» After consulting an oracle we have determined that the
following is an appropriate loop invariant

> This is the creative part of programming

LI =DV=D*Q + RAR=0

© Gunnar Gotshalks 11-17

Loop Design — 2

OP =—0- Ll =DV=D*Q + RAR=20
OP1
-
while COND { OP2 —2— }
—3—

e What we have to do is to determine COND, OP1, and OP2
while checking that the verification questions are satisfied

» In practice we iterate between loop invariant and the
program until we have a match that solves the problem

© Gunnar Gotshalks 11-18

Loop Design — 3

LI=DV=D*Q + RAR=0
e Question 1 — Make LI true at the start
OP1 = Q«0; R«DV
Ll is true
DV=D*0 + DV

DV > 0 from the precondition — R=0

© Gunnar Gotshalks

11-19

Loop Design — 4

LI=DV=D*Q + RAR=0
while COND { OP2 —2— }

e (Question 2 — Is LI still true after OP2 is executed?
COND =R=D True before OP2 exec
OP2 =Q«<~Q+1; R< R-D
Therefore Q' =Q+1 AR =R-D

» After OP2 show LI first part is true

>DV=D*Q" + R’ LI first part
=D *(Q+1)+(R-D) Substitute equality
=D*Q +D+R-D Rearrange
=D*Q + R True before OP2, still true

» See effect of moving data from workToDo (D & DV) to
workDone (Q & R) while maintaining the invariant.

© Gunnar Gotshalks 11-20

Loop Design -5

LI=DV=D*Q + R AR=0
while COND { OP2 —2— }

e Question 2 — Is LI still true after OP2 is executed?
COND =R=D True before OP2 exec
OP2 =Q<«<Q+1; R<R-D
Therefore Q' =Q+1 A R " =R-D

» After OP2 show second part of LI is still true

>R =0 LI second part
— (R—-D)= 0 Substitute equality
— R=D Rearrangement is true from COND

Therefore R’ =0 is true

© Gunnar Gotshalks

11-21

Loop Design — 6

LI=DV=D*Q + RAR=0

while R=D {
Q«<Q+1
R« R-D

}

e Question 3a — Does COND eventually become false?

» Every time around the loop OP2 reduces the size
of Rby D>0.

» |n a finite number of iterations R must become
less than D.

© Gunnar Gotshalks

11-22

Loop Design -7

LI=DV=D*Q + R AR=0

COND=R=D

e Question 3b
Does ~ COND and LI — postcondition for OP ?

» ~COND — R<D

>

A4

LI =DV=D*Q + R AR=0

» Together > DV=D*Q + R A 0<R<D

» Equals Problem specification
0=<=R<D ANDV=D*Q+R

© Gunnar Gotshalks 11-23

Loop Invariant — Example 1a

e Copy a sequence of characters from input to output
read aChar from input
while aChar # EOF
write aChar to output
read aChar from input
end while

 The loop invariant is the following

INf[1..N] =Outf1..j—1] + aChar+In[j+1..N]

totalWork = workDone + workToDo

© Gunnar Gotshalks 11-24

Loop Invariant — Example 1b

e The loop invariant is the following

In[1..N] = Out[1..j—1]+aChar+In[j+1.. N]

e The loop invariant can be simplified by removing
Input[i + 1 .. N] from each side of the relationship
In[1..j] = Out[1..j—1]+ aChar

e |tis the simplified form that one sees most often

© Gunnar Gotshalks

11-25

Loop Invariant — Example 2a

e Compute the sum of the integers 1to N
sum <0 ; p <0
loop exit whenp =N
p+=1; sum+=p
end loop

e The loop invariant is the following

n

n
Yj o= sum + Y

1 p+l

totalWork = workDone + workToDo

© Gunnar Gotshalks

11-26

Loop Invariant — Example 2b

e The loop invariant is the following

n

2j= sum +ij

1 p+l

e Simplify by removing the following expression from each
side of the relationship

S

To get p+l

p
Zj = sum
1

© Gunnar Gotshalks 11-27

Loop Invariant — Example 3a

e Comparestring A[1..p]withstringB[1..p]l.
Last character in string must be EOS

J <1
loop exit when A[j]#B[j]or A[j]=EOS
j+=1
end loop
A[1..p]?B[1..p] totalWork
= A[1..j—-1]=B[1..]-1] workDone
+A[j..n]?B[j..n] workToDo

AN Jjsp AA[p]=B[p]=EOS

Support conditions

© Gunnar Gotshalks 11-28

Loop Invariant — Example 3b

e The loop invariant is the following.
A[1.p]?B[1..p]
= A[1..j-1]1=B[1..j-1]
+A[j..p]1?B[j..p]
ANjsp N A[p]=B[p]=EOS

e The simplified loop invariant
A[1..j—-1]1=B[1..j—-1]
A j<sp AN A[p]=B[p]=EOS

© Gunnar Gotshalks

11-29

Context for loop inductive step

Inductive step

Backward
chain proof

Loop question 2

Loop body
K++
a[k] := kA2

LI before loop — old values

v

LI after loop — new values

Forward
chain proof

(Llbefore A COND) + execution(OP2) = Llafter

© Gunnar Gotshalks

11-30

