
08-1	

© Gunnar Gotshalks!

Assertions!

How to write correct programs and know it!
– Harlan Mills!

08-2	

© Gunnar Gotshalks!

Assertions!

•  Boolean expressions or predicates that evaluate to true or
false in every state  
!

•  In a program they express constraints on the state that
must be true at that point  
!

•  Associate with!
»  Individual program statements!
»  functions!
»  classes!

08-3	

© Gunnar Gotshalks!

Assertions & Correct Programs!

•  Specify clearly, precisely and succinctly!
» What is expected and guaranteed by each component –

class, function and statement 
!

•  The essence of documentation  
!

•  Essential for debugging  
!

•  Aids in fault tolerance!

08-4	

© Gunnar Gotshalks!

•  Arithmetic operators!
!+ – * / ^ (exponent)!
!// div (integer division) 
\\ mod (modulus / remainder)!

!

•  Relational operators!
!= ≠ ≤ ≥ < >!

!

•  Boolean operators & logic!
 and or xor ~ not !
 implies iff!

Assertion Language Symbols!

∧ ∨ ⊕ ¬

→ ↔

08-5	

© Gunnar Gotshalks!

•  Semi-strict and and or – Eiffel only for practical and
efficiency reasons!
»  Also called lazy evaluation in other programming

languages!

!and then!
! !A and then B Evaluate B only if A is true!
!!
!or else!
! !A or else B ! Evaluate B only if A is false!

Assertion Language Symbols – 2!

08-6	

© Gunnar Gotshalks!

•  Predicate logic!
 ! forall exists (there exists) !
 | such that!
 • it is the case that (it holds that)!
!

•  Set operators!
! member_of not_member_of 	

 contains ! 
 does_not_contain!

 intersection union !\ set difference!
!#S number of members of the set S!

Assertion Language Symbols – 3!

∀ ∃

∈ ∉
⊃ ⊇ ⊂ ⊆
⊄
∩ ∪

08-7	

© Gunnar Gotshalks!

Assertion Language Special Symbols!

•  Special variables related to program semantics!

Result ! – result of a function!
Current @! – current object!
Void ! – not attached!

08-8	

© Gunnar Gotshalks!

Variable before and after values!

•  Mathematical notation!
name!
!value of the variable name before its value is changed!

name'!
!value of the variable name after a its value has changed!

!
!

•  Eiffel notation!
name!
!value of the variable name after a routine terminates!

old name!
!value of the variable name before a routine starts!

Limited context!

Unlimited context!

08-9	

© Gunnar Gotshalks!

Quantified Expression!

•  Used to express properties about sets of objects!
!

!

!Quantifier Range_Expr [| Restriction] • Property!
Quantifier forall exists (there exists) 
	

Range_Expr var_name : set_of_values 
!

! !Restriction Boolean expression or, recursively, !
! ! a quantified expression 
!

 ! !Property Boolean expression or, recursively,! !
a quantified expression!

such that!
it holds /!
it is the case that!

∀ ∃

08-10	

© Gunnar Gotshalks!

Range Expression examples!

!

•  Type range – each value is of a given type  
 

 v : VEHICLE!

•  Sequence range – each value is in a sequence  
 

 k : low .. high!

•  Member range – each value is a member in a set 
 

 c children!

Feature name of a!
collection of items!

∈

08-11	

© Gunnar Gotshalks!

Mathematical Notation example!

class CITIZEN feature!
!

 name, sex, age : VALUE!
 spouse : CITIZEN!
 children, parents : SET[CITIZEN]!
!

 single : BOOLEAN ensure Result (spouse = Void)!
!

 divorce!
 require ~ single!
 ensure single (old spouse) . single!
 end!
!

invariant!
 single spouse . spouse = @!
 parents . count = 2!
 c children • (p c . parents • p = @)!
!

end!

↔

∧

∨

∀ ∈ ∃ ∈

08-12	

© Gunnar Gotshalks!

Textual Notation example!

class CITIZEN feature!
!

 name, sex, age : VALUE!
 spouse : CITIZEN!
 children, parents : SET[CITIZEN]!
!

 single : BOOLEAN ensure Result iff (spouse = Void)!
!

 divorce!
 require not single!
 ensure single and (old spouse) . single!
 end!
!

invariant!
 single or spouse.spouse = Current!
 parents.count = 2!
 for_all c member_of children it_holds!
 (exists p member_of c . parents it_holds p = Current)!
!

end!

08-13	

© Gunnar Gotshalks!

•  Set enumeration – list the members!
S = { a, e, i, o, u }!
!The set of vowels in the English alphabet!

•  Set comprehension – logically specify members 
Notice that the forall is implicit not explicit!

!{ x , y : Integer | (0 < x < 10) (1 ≤ y ≤ 9) • x3 + y3 }!
!The set of the sums of pairs of the cubes of single digit
integers greater than zero!

Specifying Members of a Set!

∧

08-14	

© Gunnar Gotshalks!

Pre-Conditions!

•  Statement syntax!
»  require boolean expression!

•  Where within function/procedure!
»  write immediately after the routine header!

add(new_item : T) !
-- add the new_item to the collection!
!

require not is_full!
 ! not has(new_item)!
!

do!
!

...!
!

end!

08-15	

© Gunnar Gotshalks!

Post-Conditions!

•  Statement syntax!
»  ensure boolean expression!

•  Where within function/procedure!
»  write just before the end for the routine body!

add(new_item : T) !
-- add the new_item to the collection!
do!
...!
ensure has(new_item)!
end!

08-16	

© Gunnar Gotshalks!

State changes!

•  Show relationship between initial and final values!

•  At the end of the body the final values are in effect!

•  Refer to initial values using the keyword old!

addElement (element : TYPE)!
require size < Capacity!
do!
!

...!
!

ensure size = old size + 1!
end!

08-17	

© Gunnar Gotshalks!

Assertions are tagged!

•  Tag names are used to identify assertions!

addElement (element : TYPE)!
require enough_space: size < Capacity!
do!
!

...!
!

ensure one_larger: size = old size + 1!
end!

08-18	

© Gunnar Gotshalks!

Non-executable assertions!

insert_in_row(matElem : MATRIX_ELEMENT)	

 -- Insert the matrix element in the current row	

 require …	

 local …	

 do …	

ensure	

 -- contains(MatrixElement(data, row, column)) at < row, column >	

end	

•  Use comments if you cannot write an executable
assertion!

•  Use already defined functions or custom written functions!

08-19	

© Gunnar Gotshalks!

Loop Invariants & Loop Syntax!

from!
 init statements!
invariant!
 assertions for invariant!
until!
 exit condition!
loop!
 body statements!
variant!
 integer expression!
end!

• Can invoke Boolean!
 functions!
!
• Use agents to implement 
 predicate calculus  
 expressions!

• Always non negative  
!
• Body decreases value!
 on every iteration!
!
• Ideally 0 on loop exit!

08-20	

© Gunnar Gotshalks!

Loop Invariant Example!

•  Insert an element into a sorted by column singly linked list!

 row := matElem.row ; column := matElem.column	

 from p := rowList @ row	

 invariant ???	

 until	

 p = void or p.column >= column	

 loop	

 pp := p ; p := p.next_in_row	

 end!

…! …!

p!pp!

next_in_row!

08-21	

© Gunnar Gotshalks!

Loop Invariant Example – 2!

•  Using mathematical notation!

invariant 	

 predecessor_relation: (pp = void p = head)	

 	

 ! (pp ≠ void pp . next = p)	

	

 predecessor_before : pp = void pp . column < column	

	

 column_less_than: k : head .. pp • k . column < column	

∧
∧

∀

∨

∨

08-22	

© Gunnar Gotshalks!

Loop Invariant Example – 3!

•  Eiffel executable assertion.!
•  Column_less_than uses an agent to implement the invariant!

>  Agents and loop invariant details are in other slide sets!

 from p := rowList @ row	

 invariant	

 predecessor_relation : (pp = void and p = rowList @ row)	

 	

 or (pp /= void and pp.next_in_row = p)	

	

 predecessor_before : pp = void or pp.column < column	

	

 -- forall k : rowList @ row .. pp :: k.column < column	

 data_less_than : column_limit(rowList @ row, pp,	

 	

 	

 agent less_than(?, column))	

end	

08-23	

© Gunnar Gotshalks!

Check Assertion!

•  Within the body of a routine you can insert a check clause!

•  The check clause is executed and if an assertion is false
then an exception occurs!

•  Used to remind the reader of a non obvious fact!

If full then error := overflow!
else!
 check!
 representation_exists : representation /= Void 
 end!
 representation.put(x) ; error := none!
end!

08-24	

© Gunnar Gotshalks!

Class Invariants!

•  Appear in the invariant clause just before the end of the
class definition!

class RING_BUFFER!
...!
invariant!
 -- Abstract properties!
 enough_capacity: Capacity >= 3!
 unique_items: for_all(agent unique_item(?)) !
!
-- Implementation properties!
 proper_buffer_size: Buffer_size = Capacity + 1!
 count_and_ptrs_related:!
 count = (Buffer_size + last - first + 1) \\ Buffer_size!
end!

08-25	

© Gunnar Gotshalks!

Class Invariants – 2!

•  Class invariants define which states of the ADT are valid!

•  True at stable times!
»  After make (object creation)!
»  Before and after every exported feature call!

>  Could be false during a feature call as various sub-
states change!

•  Invariant is implicitly a part of every pre and post condition!

08-26	

© Gunnar Gotshalks!

Class Invariants – examples!

•  See slides 11 & 12 in this set of slides!
»  Relationship between parents and children!
»  Relationship between spouses!

•  See Abstract data type documentation slides 18 .. 23!
»  Relationship between first and last pointers in a circular

queue and the length of the queue!

•  Case studies!
»  Sparse matrix!
»  Dictionary!

•  Report 1 system!

08-27	

© Gunnar Gotshalks!

General Guideline!

•  Assertions may be written in many ways!
»  Select the representation to be as clear and easy to

understand as possible!
>  Point is to convey information, not provide a puzzle

to be solved 
!

»  Use notation that is close to the meaning of the
relationships involved!

>  Set notation ! !{ … }!
>  Bag notation! ![[…]]!
>  Sequence notation < … >!

08-28	

© Gunnar Gotshalks!

Assertion Monitoring!

•  Eiffel provides multiples levels of assertion monitoring!

•  Always should be on during debugging!

•  Turn off as little as possible only if time is critical and the
system can be trusted!

