Multiple Access (1)

Required reading:
Forouzan 12.1.1
Garcia 6.1, 6.2.1, 6.2.2

CSE 3213, Fall 2015 Instructor: N. Vlajic

Broadcast Networks - aka multiple access networks - multiple sending \& receiving stations share the same transmission medium

- advantages:

1) low cost infrastructure
2) all stations attached to the medium hear transmission from any other station \Rightarrow routing not necessary

- disadvantages:
- access of multiple sending and receiving nodes to the shared medium must be coordinated

1) stations should not be transmitting simultaneously or interrupting each other
2) stations should not be able to 'monopolize' the transmission/shared medium

- examples: LAN, cellular and satellite networks

Approaches to Medium Sharing

(1) Static Channelization - static \& collision free sharing

- partition medium into separate channels, which are then dedicated to particular users
- advantage: no collisions, perfect fairness - each node gets a dedicated transmission rate R/N during each time interval (suitable for 'streaming data', e.g. voice streams)
- disadvantage: each user gets only a fraction of the full channel capacity, even when no other station is transmitting

Example [systems employing static channelization]

- two frequency bands: one for uplink and one for downlink
- each station is allocated a channel in the uplink and in the downlink frequency band
- different approaches can be employed to create uplink/downlink channels (FDMA, TDMA, CDMA)
- although each station can theoretically transmit to and listen to any channel, stations remain within their pre-allocated channels to avoid interference
(2) Dynamic Medium Access - MAC Schemes
- the medium is shared on a 'per frame' basis
- advantage: transmitting node transmits at the full rate of the channel
(suitable for 'bursty data', e.g. short messages)
- disadvantage: simultaneous attempts by two or more stations to access the channel result in 'collision'
- collision can be minimized through scheduling or random access control

Ring Network

Bus Network

continuous
load
heavier
bursty
load
light
bursty load

ALOHA - the earliest random-access method (1970s) - still used in wireless cellular systems for its simplicity

- a station transmits whenever it has data to transmit, producing smallest possible delay - receiver ACKs data
- if more than one frames are transmitted at the same time, they interfere with each other (collide) and are lost
- if ACK not received within timeout (2*propagation delay), the station picks random backoff time (to reduce likelihood of subseq. collisions)
- station retransmits frame after backoff time

Legend
K : Number of attempts
T_{p} : Maximum propagation time
T_{fr} : Average transmission time
T_{B} : (Back-off time): $\mathrm{R} \times \mathrm{T}_{\mathrm{p}}$ or $\mathrm{R} \times \mathrm{T}_{\mathrm{fr}}$
$\mathrm{R}:$ (Random number): 0 to $2^{\mathrm{K}}-1$
Station has
a frame to send

Example [Aloha throughput]

Vulnerable Period • assume frames of constant length (L) \& transmission time ($\mathrm{X}=\mathrm{L} / \mathrm{R}$)

- consider a frame with starting transmission time t_{o} the frame will be successfully transmitted if no other frame collides with it
- any transmission that begins in interval $\left[t_{0}, t_{0}+X\right]$, or in the prior X seconds leads to collision
vulnerable period $=\left[t_{0}-X, t_{0}+X\right]$

What is the probability of no other transmission, i.e. no collision, in the vulnerable period?!

Arrival: passengers arrive randomly and independently - a Poisson process ${ }_{\mathbf{1} 2}$ Passenger arrivals are equally likely at any instant in time.

average \# of arrived passengers in T [sec]: average \# of passengers in $T[s e c]=\lambda T$
probability of having exactly k passengers in line after T [sec]:

$$
P[k \text { arrivals in } T \text { seconds }]=\frac{(\lambda T)^{k}}{k!} e^{-\lambda T}
$$

Departure:
What is the probability that exactly 1 passenger arrives to the station, off the buss, in T sec?
λ [passenger / sec]

$P[k$ arrivals in T seconds $]=\frac{(\lambda T)^{k}}{k!} e^{-\lambda T}$

