
Error Control (2)

CSE 3213, Fall 2015
Instructor: N. Vlajic

Required reading:
Forouzan 10.3
Garcia 3.9.4

1

Single Parity
 detects all error involving

an odd # of errors

2-D Parity
 detects & corrects 1-bit errors
 detects all 2- and 3- bit errors
 detects some 4-bit errors

Internet Checksum
 detects all errors involving

an odd # of bits
 detects most errors involving

an even # of bits

2

Cyclic Redundancy Check

CRC – unlike the parity check and Internet checksum, which are based
on binary addition, CRC is based on modulo-2 division
• redundancy bits used by CRC are derived by dividing the data unit by

a predetermined divisor – the remainder is CRC
• CRC is, then, appended to the end of the data unit so that the resulting

data unit becomes exactly divisible by the divisor

CRC Advantages (1) can be easily implemented in hardware
(2) can detect all single and double errors
(3) very effective in detecting burst errors !!!

Most data communications standards use CRC (polynomial) codes for error
detection, e.g. IEEE 802 LAN standards, HDLC, ATM, etc.

3

Cyclic Redundancy Check (cont.)

Example [CRC overview]

(1) append a string of n 0s to the data unit, where (n+1) is the number of bits in
the predetermined divisor (*)

(2) divide the newly elongated data (dividend) by the divisor, using binary modulo
2 division; the remainder resulting from the division is CRC

(3) replace 0s appended in step (1) with CRC – note, CRC may also consist of all
0s

(4) receiver treats the whole string (data+CRC) as a unit and divides it by the
same divisor that was used to find CRC
 string arrives with no errors ⇒ division yields a zero remainder
 string has been changed in transit ⇒ division yields a non-zero remainder

(*) Why should we reserve n bits for CRC?!

In modulo-2 (binary) division the remainder is always at least one bit shorter than
the divisor.

4

Cyclic Redundancy Check (cont.) 5

Cyclic Redundancy Check (cont.)

CRC Polynomial
Arithmetic

– a common way of viewing the CRC process is by
expressing all values as polynomials in a dummy
variable X, with binary coefficients
• bit pattern bmbm-1bm-2 … b1b0 corresponds to

bmXm + bm-1Xm-1 + … + b1X + b0

• e.g. m=7, M=11000011 ⇒ M(X) = X7 + X6 + X + 1

• e.g. m=6, M=1100001 ⇒ M(X) = X6 + X5 + 1

• polynomial format is useful for two reasons:
 it is short (e.g. 1000000000000010 ↔ X15 + X)
 it can be used to easily prove the concepts mathematically

• polynomial arithmetic:
 polynomial coefficients can only be 0 or 1
 operations are performed in ‘modulo-2’ (exclusive OR) !!!

6

Polynomial Addition:

Polynomial Multiplication:

(x7 + x6 + 1) + (x6 + x5) = x7 + x6 + x6 + x5 + 1

= x7 +(1+1)x6 + x5 + 1

= x7 + x5 + 1

(x +1) (x2 + x + 1) = x(x2 + x + 1) + 1(x2 + x + 1)

= (x3 + x2 + x) + (x2 + x + 1)

= x3 + 1

Cyclic Redundancy Check (cont.)

Example [polynomial addition, subtraction, multiplication, division]

X6 disappears as
(1+1) mod 2 =0

Polynomial Subtraction:
in modulo-2 arithmetic, subtraction is the same as addition

7

Cyclic Redundancy Check (cont.)

x3 + x + 1) x6 + x5

x6 + x4 + x3

x5 + x4 + x3

x5 + x3 + x2

x4 + x2

x4 + x2 + x
x

= Q(x) quotient

= R(x) remainder

divisor
dividend

+ x+ x2x3

Note: Degree of R(x) is less than degree of divisor.

The first term of the quotient is chosen so that when
we multiply the given term by the divisor, the highest
power of the resulting polynomial is the same as the
highest power of the dividend.

Polynomial Division:

interim remainder

8

Cyclic Redundancy Check (cont.)
CRC Polynomial
Arithmetic (cont.)

– assume:

divisor / generator polynomial: G (n+1 bits)
information: I (k bits, k>n)
CRC remainder: R (≤ n bits)
transmitted frame – I+R: B (k+n bits)

• CRC process can now be described as:

step 1)

step 2)

• note, from step 2) and 1)

and in modulo-2 arithmetic

G(X)
R(X)Q(X)

G(X)
I(X)Xn

+=
⋅

R(X)I(X)XB(X) n +⋅= transmitted frame

[] R(X)R(X)Q(X)G(X)R(X)I(X)XB(X) n ++⋅=+⋅=

Q(X)G(X)B(X) ⋅=
transmitted frames,

i.e. all valid codewords
are multiples of the

generator polynomial

I(X)

G(X)

R(X)

9

Cyclic Redundancy Check (cont.)

Example [CRC polynomial arithmetic]
Let G(X) = X3 + X + 1. Consider the information sequence 1100.
Find the transmitted codeword corresponding to the given information sequence.

G(X) = X3 + X + 1, n+1=4

I(X) = X3 + X2

X3*I(X) = X6 + X5

R(X) = X

Transmitted codeword: B(X) = X3*I(X) + R(X) = X6 + X5 + X ↔ (1,1,0,0,0,1,0)

x3 + x + 1) x6 + x5

x3 + x2 + x

x6 + x4 + x3

x5 + x4 + x3

x5 + x3 + x2

x4 + x2

x4 + x2 + x

x

10

Cyclic Redundancy Check (cont.)

Error Detection
with CRC
Polynomial
Arithmetic

– receiver can check whether there have been any
transmission errors by dividing the received polynomial
(B’(X)) by G(X)
• if there are no errors, remainder = 0

• if remainder ≠ 0, an error is (likely) detected

• note: if error polynomial E(X) is divisible by G(X), error
pattern will be undetectable !!!

• design of polynomial codes involves:
1) identifying error polynomials we want to be able to detect
2) synthesizing a generator polynomial that will not divide

the given error polynomials without remainder

remainder no Q(X),
G(X)

Q(X)G(X) :B(X)(X)B' =
⋅

=

G(X)
E(X)Q(X)

G(X)
E(X)Q(X)G(X) :E(X)B(X)(X)B' +=

+⋅
+=

11

Cyclic Redundancy Check (cont.)

Designing Good Polynomial Codes – G(X)

(1) Codes that Detect Single Errors

• codeword of n bits ⇒ Esingle = (0,0,0,1,0,0, …, 0) ⇒ E(X) = Xi , 0 ≤ i < n

• if G(X) has more than one term, and coefficient of X0 is 1, all single-bit
errors can be caught, regardless of bit-i’s position

(2) Codes that Detect Double Errors

• codeword n bits ⇒ Edouble = (0,0,0,1,0,1, …, 0) ⇒

⇒ E(X) = Xi + Xj , 0 ≤ i < j ≤ n

⇒ E(X) = Xi (1+ Xj-i) , 0 ≤ i < j ≤ n

• from (1), G(X) is such that it has more than one term & cannot divide Xi ⇒
E(X) will be divisible by G(X) only if G(X) divides (1 + Xj-i) ⇒ so we need
G(X) that does NOT divide (1 + Xj-i) without remainder, for any value of i & j

12

Cyclic Redundancy Check (cont.)

Example [CRC generators]

How good are the below CRC generators for detecting two isolated single-bit
errors.

a) X + 1
Bad choice. Any two errors next to each other will not be detected.

b) X4 + 1
Bad choice. Any two errors 4 bits/positions apart will not be detected.

c) X15 + X + 1
Good choice, aka PRIMITIVE POLYNOMIAL – cannot be factorized.

13

Designing Good Polynomial Codes – G(X) (cont.)

Cyclic Redundancy Check (cont.)

(3) Codes that Detect Odd Number of Errors

• we want to make sure that CRC performs as good as single parity check

• E(X) has an odd number of terms, hence at X=1 ⇒ E(1) = 1

• G(X) must have a factor (X+1), since there is no polynomial E(X) with an
odd number of terms that has (1+X) as a factor

 PROOF: assume such a polynomial, E(X), exists, then

E(X) = (1+X) Q(X) ⇒ E(1) = (1+1)*Q(1) = 0

and this contradicts the fact that E(1) = 1, due to an odd number of
terms

• pick G(X)=(X+1)*Pprimitive(X) to be able to detect all single,
double, & odd-number of errors

14

1. Which error detection method uses ones complement arithmetic?
(a) single parity check
(b) 2-D parity check
(c) CRC
(d) checksum

2. In cyclic redundancy checking, the divisor is _____________________ the CRC.
(a) the same size as
(b) 1 bit less than
(c) 1 bit more than
(d) 2 bits more than

3. In CRC there is no error if the remainder at the receiver is _______________.
(a) equal to the remainder at the sender
(b) zero
(c) nonzero
(d) the quotient at the sender

4. Which error detection method can detect a burst error?
(a) the parity check
(b) 2-D parity check
(c) CRC
(d) (b) and (c)

Exercise 15

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

