Error Control (2)

1

Required reading: Forouzan 10.3 Garcia 3.9.4

CSE 3213, Fall 2015 Instructor: N. Vlajic

 detects all error involving an odd # of errors

2-D Parity

- detects & <u>corrects</u> 1-bit errors
- detects all 2- and 3- bit errors
- detects some 4-bit errors

- detects all errors involving an odd # of bits
- detects most errors involving an even # of bits

- **CRC** unlike the parity check and Internet checksum, which are based on binary addition, <u>CRC is based on modulo-2 division</u>
 - redundancy bits used by CRC are derived by dividing the data unit by a predetermined divisor – the remainder is CRC
 - CRC is, then, appended to the end of the data unit so that the resulting data unit becomes exactly divisible by the divisor

CRC Advantages

- (1) can be easily implemented in hardware
- (2) can detect all single and double errors
- (3) very effective in <u>detecting burst errors</u> !!!

Most data communications standards use CRC (polynomial) codes for error detection, e.g. IEEE 802 LAN standards, HDLC, ATM, etc.

Example [CRC overview]

- (1) append a string of n 0s to the data unit, where (n+1) is the number of bits in the predetermined divisor (*)
- (2) divide the newly elongated data (dividend) by the divisor, using binary modulo <u>2</u> division; the remainder resulting from the division is CRC
- (3) replace 0s appended in step (1) with CRC note, CRC may also consist of all 0s
- (4) receiver treats the whole string (data+CRC) as a unit and divides it by the same divisor that was used to find CRC
 - string arrives with no errors ⇒ division yields a zero remainder
 - string has been changed in transit \Rightarrow division yields a non-zero remainder

(*) Why should we reserve n bits for CRC?!

In modulo-2 (binary) division the remainder is always at least one bit shorter than the divisor.

Arithmetic

CRC Polynomial – a common way of viewing the CRC process is by expressing all values as polynomials in a dummy variable X, with binary coefficients

• bit pattern
$$b_m b_{m-1} b_{m-2} \dots b_1 b_0$$
 corresponds to
 $b_m X^m + b_{m-1} X^{m-1} + \dots + b_1 X + b_0$

- e.g. m=7, M=11000011 \Rightarrow M(X) = X⁷ + X⁶ + X + 1
- e.g. m=6, M=1100001 \Rightarrow M(X) = X⁶ + X⁵ + 1
- polynomial format is useful for two reasons:
 - it is short (e.g. 10000000000010 \leftrightarrow X¹⁵ + X)
 - it can be used to easily prove the concepts mathematically
- polynomial arithmetic:
 - polynomial coefficients can only be 0 or 1
 - operations are performed in <u>'modulo-2' (exclusive OR) !!!</u>

Example [polynomial addition, subtraction, multiplication, division]

Polynomial Addition:

$$(x^{7} + x^{6} + 1) + (x^{6} + x^{5}) = x^{7} + x^{6} + x^{6} + x^{5} + 1$$

= $x^{7} + (1+1)x^{6} + x^{5} + 1$
= $x^{7} + x^{5} + 1$

Polynomial Subtraction:

in modulo-2 arithmetic, subtraction is the same as addition

Polynomial Multiplication:

$$(x+1) (x^{2} + x + 1) = x(x^{2} + x + 1) + 1(x^{2} + x + 1)$$
$$= (x^{3} + x^{2} + x) + (x^{2} + x + 1)$$
$$= x^{3} + 1$$

Polynomial Division:

Note: Degree of R(x) is less than degree of divisor.

and in modulo-2 arithmetic

$$\mathsf{B}(\mathsf{X}) = \mathsf{G}(\mathsf{X}) \cdot \mathsf{Q}(\mathsf{X}) \quad \blacktriangleleft$$

transmitted frames, i.e. all valid codewords are multiples of the generator polynomial

Example [CRC polynomial arithmetic]

Let $G(X) = X^3 + X + 1$. Consider the information sequence 1100. Find the transmitted codeword corresponding to the given information sequence.

Transmitted codeword: $B(X) = X^{3*}I(X) + R(X) = X^{6} + X^{5} + X \leftrightarrow (1,1,0,0,0,1,0)$

Error Detection with CRC Polynomial Arithmetic

- receiver can check whether there have been any transmission errors by dividing the received polynomial (B'(X)) by G(X)
 - <u>if there are no errors, remainder = 0</u>

B'(X) = B(X):
$$\frac{G(X) \cdot Q(X)}{G(X)} = Q(X)$$
, no remainder

- <u>if remainder \neq 0, an error is (likely) detected</u> B'(X) = B(X) + E(X): $\frac{G(X) \cdot Q(X) + E(X)}{G(X)} = Q(X) + \frac{E(X)}{G(X)}$
- note: if error polynomial E(X) is divisible by G(X), error pattern will be undetectable !!!
- design of polynomial codes involves:
 - 1) identifying error polynomials we want to be able to detect
 - 2) synthesizing a generator polynomial that will not divide the given error polynomials without remainder

Designing Good Polynomial Codes – G(X)

- (1) Codes that Detect Single Errors
 - codeword of n bits $\Rightarrow E_{single} = (0,0,0,1,0,0,...,0) \Rightarrow E(X) = X^{i}, 0 \le i < n$
 - if G(X) has more than one term, and coefficient of X⁰ is 1, all single-bit errors can be caught, regardless of bit-i's position
- (2) Codes that Detect Double Errors
 - codeword n bits $\Rightarrow E_{double} = (0,0,0,1,0,1,...,0) \Rightarrow$

$$\Rightarrow E(X) = X^i + X^j, \quad 0 \le i < j \le n$$

$$\Rightarrow E(X) = X^i (1 + X^{j \cdot i}), \quad 0 \le i < j \le n$$

from (1), G(X) is such that it has more than one term & cannot divide Xⁱ ⇒ E(X) will be divisible by G(X) only if G(X) divides (1 + X^{j-i}) ⇒ so we need G(X) that does NOT divide (1 + X^{j-i}) without remainder, for any value of i & j

Example [CRC generators]

How good are the below CRC generators for <u>detecting two isolated single-bit</u> <u>errors</u>.

a) X + 1

Bad choice. Any two errors next to each other will not be detected.

b) X⁴ + 1

Bad choice. Any two errors 4 bits/positions apart will not be detected.

c) $X^{15} + X + 1$

Good choice, aka **PRIMITIVE POLYNOMIAL** – cannot be factorized.

Designing Good Polynomial Codes – G(X) (cont.)

(3) Codes that Detect Odd Number of Errors

- we want to make sure that CRC performs as good as single parity check
- E(X) has an odd number of terms, hence at X=1 \Rightarrow E(1) = 1
- G(X) must have a factor (X+1), since there is no polynomial E(X) with an odd number of terms that has (1+X) as a factor
 - PROOF: assume such a polynomial, E(X), exists, then

 $E(X) = (1+X) Q(X) \implies E(1) = (1+1)^*Q(1) = 0$

and this contradicts the fact that E(1) = 1, due to an odd number of terms

 pick G(X)=(X+1)*P_{primitive}(X) to be able to detect all single, double, & odd-number of errors

Exercise

- 1. Which error detection method uses ones complement arithmetic?
 - (a) single parity check
 - (b) 2-D parity check
 - (c) CRC
 - (d) checksum

2. In cyclic redundancy checking, the divisor is ______ the CRC.

- (a) the same size as
- (b) 1 bit less than
- (c) 1 bit more than
- (d) 2 bits more than
- 3. In CRC there is no error if the remainder at the receiver is ______.
 - (a) equal to the remainder at the sender
 - (b) zero
 - (c) nonzero
 - (d) the quotient at the sender
- 4. Which error detection method can detect a burst error?
 - (a) the parity check
 - (b) 2-D parity check
 - (c) CRC
 - (d) (b) and (c)