Block Coding

Block Coding — encoding method in which the whole input data stream
Is split into small blocks (datawords) and replaced with
another somewhat larger blocks (codewords)

Example [input stream broken into datawords of size=4 & replaced with
codewords of size=7]

Possible combinations

(n,k)code
kcl:ntl:}lnaryr m—;»- r"|I:}|’[I:}|nar3,,r
! Message Code hDFdS
(000 0 (0000000
(1000 (1101000
(010 0) (0110100
(1100 1011100
0010 1110010
(1010 (0011010
0110 (1000110
J 110 101110 L
(001 (1010001
(100 1) 111001
(101 (1100101
110 1) 001101
o011 (0100011
1011 (1To01.011
111 010111
(1111 1111111 |

24

Code Words

Example [error detection using block coding]

Unreliable transmission

TT0TOTO00TO ™

Receiver

Decoder

Dataword

k bits

T Extract

Checker

Discard

o
H
o
o
o
H
o
H
o
H
H
Sender
Encoder
k bits| Dataword
‘ Generator I
Y
n bits Codeword

Minimum Hamming Distance — to guarantee detection of up to s errors
for Error Detection in all cases, the minimum Hamming
distance of a code must be

d

min:S+1

Legend

. Any valid codeword

® Any corrupted codeword
with 0 to s errors

Example [code withd =2 is able to detect s=1 bit-errors]

min

Datawords Codewords
00 000
01 011
10 101
11 110

Minimum Hamming Distance — to guarantee correction of up to t errors
for Error Correction in all cases, the minimum Hamming
distance must be

dmin—
dp,=2t+1 = 1= {%‘

Territory of x Territory of y

Legend

. Any valid codeword
® Any corrupted codeword
with 1 to t errors

Example [Hamming distance]

A code scheme has a Hamming distance d,;,=4. What is the error detection and
error correction capability of this scheme?

The code guarantees the detection of up to three errors (s=3), but it can correct
only 1-bit errors!

Error Detection: Single Parity Check

Error Detection Techniques

Detection methods I

| _ |
Cyclic

redundancy check

Parity check Checksum I

Single Parity Check — take k information bits and append a single check

(Even Parity) bit so that overall number of 1s is even !
Info Bits: by, by b, ..., by
Modulo 2 sum (i.e. XOR) | — Check Bit: P 1=, ®b®b® .. Db,

of information bits!

Codeword: [b,, b,, bg, ..., by, Dy4i]

e receiver checks if number of 1s is even

= receiver CAN DETECT all single-bit errors & burst
errors with odd number of corrupted bits

= single-bit errors CANNOT be CORRECTED -
position of corrupted bit remains unknown

= all even-number burst errors are undetectable !!!

Example [encoder and decoder for single parity check code]

Sender
Encoder
Dataword
dz|dp|dq|dg
.—
[
[]
Parity bit Unreliabl
nreliablg
Y Y Y Y transmissign

daz|az|aq|dg|fp

Receiver

Decoder
Dataword

dz|dp|aq|dg

et 111

Decision
logic

 syndromelSo| LTRTLTL

i

o
L
®
®
ol

Codeword

ensures that the overall
number of 1-s is even

Codeword

Sp = 0, if number of 1-s even, no error detected
S = 1, if number of 1-s odd, error detected

Example [single parity check]

* Information (7 bits): [0,1,0,1,1,0,0]
e Parity Bit: bg=0+1+0+1+1+0mod2=1
« Codeword (8 bits): [0,1,0,1,1,0,0, 1]

« Ifsingleerrorinbit3: [0,1,1,1,1,0,0, 1]
— #o0of1's =5, odd
— Error detected © !

« Iferrorsinbits3and5: [0,1,1,1,0,0,0, 1]
— #of 1's =4, even
— Error not detected ® !!!

e Iferrorsinbit3,5,6: [0,1,1,1,0,1,0, 1]
— #of1ls=5, odd
— Error detected © |

Example [single parity check code C(5,4)]

Datawords Codewords Datawords Codewords
0000 00000 1000 10001
0001 00011 1001 10010
0010 00101 1010 10100
0011 00110 1011 10111
0100 01001 1100 11000
0101 01010 1101 11011
0110 01100 1110 11101
0111 01111 1111 11110

Single Parity Check Codes — for ALL parity check codes, d,, =2
and Minimum Hamming
Distance (d,.i,,)

Effectiveness of Single Parity Check

original codeword: b=[b,b,b,...b,]

received codeword: b =[b,b, b, ...b_] 1[1]oJ2]1]1]0]2
error vector: e=[e, e, e;..e] o[1]o]o]o]1]0]0
1, if b, =b,
&= : ‘ k
0, if b, =D,

(1) Random Error Vector — there are 2" possible error (e) vectors —
Channel Model all error are equally likely

e €. es[00000000] ande=[11111111]
are equally likely

e 50% of error vectors have an even # of 1s,
50% of error vectors have an odd # of 1s

e probability of error detection failure = 0.5

e not very realistic channel model !!!

10

(2) Random Bit Error — bit errors occur independently of each other —
Channel Model P, = prob. of error in a single-bit transmission

(2.1) probability of single — where w(e) represents the number of 1sin e

bit error (W(e):l) e bit-error occurs at an arbitrary (but particular)

position

e,=0 e,=0 e;=1 e,,=0 ¢,,=0 ¢e,=0

P(w(e)=1)=(1-p,) (1-p,)-Pp -----(1-pyp) - (1-pp) - (1-Py)
N

probability of correctly
transmitted bit

P(w(e)=1)=(1- pb)n_l Py

(2.2) probability of two bit errors: w(e) 2

P(w(e)=2) = P(w(e):l)(l_pb] < P(w(e)=1)

b

(2.3) probability of w(e)=k bit errors: w(e)=k

Pwe)=k) = (1-py)"™ (P,) —-(1 py)"™ pé‘(. j =P(w(e)=1)-(a)"*

1-p,

P(w(e)=k) <..< P(w(e)=2) < P(w(e)=1)

1-bit errors are more likely 2-bit errors, and so forth!

11

12

(2.4) probability that single parity check fails?!

P(error detection failure) = P(error patterns with even number of 1s) =
=P(any 2 bit error)+ P(any 4 bit error)+ P(any 6 bit error) +... =
= (#of 2—biterrors)*P(w(e)=2) +
+ (#of 4—-Dbit errors)* P(w(e) =4) +
+ (#of 6 —Dit errors)*P(w(e)=6) +...

number of combinations ‘n choose k'’:

B n! 1|10{o|1(1]|0f1]0
~ k!(n—k)!

n
(#of k—bit errors) = (k)

. . . n 2 n-2 n 4 n-4 n 6 n-6
P(error detection failure) = 5 Py (1-p,)" “ + g p,(1-p,)" "+ 5 p,(1-p,)" " +...

»
>

progressively smaller components ...

13

Example [probability of single parity check error detection failure]

Assume there are n=32 bits in a codeword (packet).
Probability of error in a single bit transmission p, = 103.
Find the probability of error-detection failure.

32 32 32
P(error detection failure):(2]pﬁ(l—pb %0 +(4 jpﬁ(l—pb 28 J{G jpg(l— P,) +...

32 *
(2 jpﬁ(l— p,)* = 32231(10‘3)2 =496*10°°

32) , 32*31*30*29
1-p,) = 107°)* =35960*10*
[4 jpb(Py) 2¥3%24 ()

1
2000

P(error detection failure) =496 *10° =4.96*10™" ~

Approximately, 1 in every 2000 transmitted 32-bit long codewords is corrupted with
an error pattern that cannot be detected with single-bit parity check.

Error Detection: 2-D Parity Check H

Two Dimensional — ablock of bits is organized in a table (rows & columns)
Parity Check a parity bit is calculated for each row and column

o 2-D parity check increases the likelihood of detecting
burst errors

= all 1-bit errors CAN BE DETECTED and CORRECTED
= all 2-, 3- bit errors can be DETECTED
= 4- and more bit errors can be detected in some cases

o drawback: too many check bits !!!

Original data
[1100111 1011101 0111001 0101001 |

1 1 0 0 1 1 111

et

1 O 1 1 1 0 1 1 5

o<

a

0 1 1 1 0 0 10%
[

—0 1 0 1 0 0 1)1

I_ 0 1 0 1 0 1 0 | 1 Column parities

Y Y Y Y
~——— 11001111 10111011 01110010 01010011 01010101
Data and parity bits

Example [effectiveness of 2-D parity check]

o 1 o 1 0 1

Column parities

Row parities

a. Design of row and column parities

11 46 o 1 1 1 | 11 b o i
-------- ? ----e-- .CE}. --‘r-----"-----&-----‘l----- --1 - 1 0 b 1 CE) 0
o1 1 1 0 0 1 0 o1 1 1 & o
01 ¢ 1 0 0 1 1 01 D 1 @ o0

0 1 i 1 0 1 0 |1 0 1 fb 1 i 1

b. One error affects two parities c. Two errors affect two parities
....... T ﬁ. LTy SELCT CECEL, SECCEEEEEEY TEPEE EE g 1 1 0 @ m 1
....... | PEPEG 5 PEEET, e .0. L IEELE, SELELL EEELE T 1 0 1 1 1 0
....... I T H Y T e S 0 1 1 IIl IE' 0
0 1 0 1 0 1 1 0 1 0 1 0 0

0O 1 0 1 0 1 0 1 0 1 0 1 0 1

d. Three errors affect four parities

e. Four errors cannot be detected

15

16

Example [2-D parity check]

Suppose the following block of data, error-protected with 2-D parity check, is sent:
10101001 00111001 11011101 11100111 10101010.

However, the block is hit by a burst noise of length 8, and some bits are corrupted.
10100011 10001001 11011101 11100111 10101010.

Will the receiver be able to detect the burst error in the sent data?

1010100 1 1010001 1
0011100 1 1000100 i1
1101110 1 1101110 1
1110011 1 1110011 1

1010101 O 1010101: 0

http://en.wikipedia.org/wiki/Signed number representations

Signed Number Representation

8 bit signed magnitude

Binary
Onooooon
Onooooaq

ar111111
10000000

10000001

11111111

Signed
]

—127

Unsigned
n
1

127
125

129

255

8 bit ones’ complement

Binary
value

Qo000
Q0000001

01111101
01111110
01111111
10000000
10000001
10000010

11111110
11111111

(nes’
complement
interpretation

H]
1

124

126

127
=127
-126
-125

Unsigned
interpretation

1l
1

124
126
127
128
129
130

254
255

17

Error Detection: Internet Checksum 10

(Internet) Checksum — error detection method used by |P, TCP, UDP !!!

e checksum calculation:
= |[P/TCP/UDP packet is divided into n-bit sections

= n-bit sections are added using “1-s complement
arithmetic” — the sum is also n-bits long!

= the sum is complemented to produce checksum
(complement of a number in 1-s arithmetic is the
negative of the number)

e advantages:

= relatively small packet overhead is required —
n bits added regardless of packet size

= easy /fast to implement in software

e disadvantages:
= weak protection compared to CRC —e.qg. will NOT

detect misordered bytes/words !!!

= detects all errors involving an odd number of bits
and most errors involving an even number of bits

sum checksum

1-T =-0

v
T —T —’ Receiver

20-65536 bytes
< >
20-60 bytes
< >
Header Data
/ —_—
VER HLEN Service type Total length
4 bits 4 bits 8 bits 16 bits
Identification Flags Fragmentation offset
16 bits 3 bits 13 bits
Time to live Protocol Header checksum
& bits 8 bits 16 bits
Source IP address

Destinatioél IP address

Opiﬁon

19

20

Sender:

data is divided into k sections
each n bits long

all sections are added using 1-s
complement to get the sum

the sum is bit-wise complemented
and becomes the checksum

the checksum is sent with the data

Sender

Section 1 | n bits

Section 2 | n bits

Checksum | All Os

' Section k | n bits

A
Section k | n bits ' 1 bits
Checksum
Sum | n bits Packet
Complementi
n bits
Checksum

Receiver:

e datais divided into k sections
each n bits long

e all sections are added using 1-s
complement to get the sum

e the sum is bit-wise complemented

e if theresultis zero, the datais
accepted, otherwise it is rejected

Receiver

Section 1 | n bits

Section 2 | n bits

Checksum | n bits

Sum | n bits

Complementi

n bits

R If the result is 0, keep:
otherwise, discard.

Result

Example [Internet Checksum]

Suppose the following block of 8 bits is to be sent using a checksum of 4 bits:
1100 1010. Find the checksum of the given bit sequence.

1100 A
1010
0000
1-s complement addition:
; 0 : ..
=sum bllo Perform standard binary addition.
> If a carry-out (>n") bit it produced,
0110 swing that bits around and
1 add it back into the summation.
1-s complement addition: 0111 (7)

J

Negative binary numbers:

Negative binary numbers are
checksum: 1000 (-7) bit-wise complement of

corresponding positive numbers.

v

21

Suppose the receiver receives the bit sequence and the checksum with no error.

1100

1010

1000

sum: [11110

1-s complement addition: 1111
bit-wise complement: 0000

When the receiver adds the three blocks, it will get all 1s, which,
after complementing, is all Os and shows that there is no error.

If one or more bits of a segment are damaged, and the corresponding bit of
opposite value in a second segment is also damaged,
the sums of those columns will not change and the receiver will not
detect the problem. ®

22

23

Example [Internet Checksum]
Suppose the following block of 16 bits is to be sent using a checksum of 8 bits.
10101001 00111001. The numbers are added using one’s complement:

10101001
00111001
00000000

Sum 11100010
Checksum 00011101

The pattern sent is 10101001 00111001 00011101.

Now suppose the receiver receives the pattern with no error.

10101001 00111001 00011101
When the receiver adds the three blocks, it will get all 1s, which, after complementing,

is all Os and shows that there is no error.
10101001
00111001
00011101

Sum 11111111
Complement 00000000 means that the pattern is OK.

Example [Internet Checksum]

Now suppose that in the previous example, there was a burst error of length 5 that

affected 4 bits.

10101

111001 00011101

When the receiver added the three sections, it got

Partial Sum
Checksum

Complement

10101111
11111001
00011101
11000101
11000110

the pattern is corrupted.

24

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

