Block Coding

Block Coding - encoding method in which the whole input data stream is split into small blocks (datawords) and replaced with another somewhat larger blocks (codewords)

Example [input stream broken into datawords of size=4 \& replaced with codewords of size=7]

Example [error detection using block coding]

Mìnimum Hamming Distance - to guarantee detection of up to s errors for Error Detection in all cases, the minimum Hamming distance of a code must be

$$
d_{\min }=s+1
$$

Legend
\square Any valid codeword
Any corrupted codeword with 0 to s errors

Example [code with $\mathrm{d}_{\text {min }}=2$ is able to detect $\mathrm{s}=1$ bit-errors]

Datawords	Codewords
00	000
01	011
10	101
11	110

Minimum Hamming Distance - to guarantee correction of up to terrors for Error Correction in all cases, the minimum Hamming distance must be

$$
d_{\min }=2 t+1 \Rightarrow t=\left\lfloor\frac{d_{\min -1}}{2}\right\rfloor
$$

Legend

\square Any valid codeword

- Any corrupted codeword
with 1 to terrors

Example [Hamming distance]
A code scheme has a Hamming distance $d_{\text {min }}=4$. What is the error detection and error correction capability of this scheme?

The code guarantees the detection of up to three errors ($s=3$), but it can correct only 1-bit errors!

Error Detection Techniques

Single Parity Check - take k information bits and append a single check (Even Parity) bit so that overall number of 1 s is even!

	Info Bits:
Modulo 2 sum (i.e. XOR) of information bits!	$\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots, \mathbf{b}_{\boldsymbol{k}}$
	Check Bit: Codeword:
$\mathbf{b}_{\mathrm{k}+1}=\mathbf{b}_{\mathbf{1}} \oplus \mathbf{b}_{2} \oplus \mathbf{b}_{3} \oplus \ldots \oplus \mathbf{b}_{\mathbf{k}}$	
$\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots, \mathbf{b}_{\mathbf{k}}, \mathbf{b}_{\mathrm{k}+1}\right]$	

- receiver checks if number of $1 \mathbf{s}$ is even
- receiver CAN DETECT all single-bit errors \& burst errors with odd number of corrupted bits
- single-bit errors CANNOT be CORRECTED position of corrupted bit remains unknown
- all even-number burst errors are undetectable !!!

Example [encoder and decoder for single parity check code]

Sender

Receiver

$s_{0}=0$, if number of 1-s even, no error detected $s_{0}=1$, if number of 1-s odd, error detected

Example [single parity check]

- Information (7 bits):
[$0,1,0,1,1,0,0$]
- Parity Bit: $b_{8}=0+1+0+1+1+0 \bmod 2=1$
- Codeword (8 bits): [$0,1,0,1,1,0,0,1]$
- If single error in bit 3 : $[0,1,1,1,1,0,0,1]$
- \# of 1's = 5, odd
- Error detected ()!
- If errors in bits 3 and 5 : [0, 1, 1, 1, $0,0,0,1]$
- \# of 1's = 4, even
- Error not detected : ! !!
- If errors in bit 3, 5, 6 :
$[0,1,1,1,0,1,0,1]$
- \# of 1's = 5, odd
- Error detected ()!

Example [single parity check code $\mathbf{C}(5,4)$]

Datawords	Codewords	Datawords	Codewords
0000	00000	1000	10001
0001	00011	1001	10010
0010	00101	1010	10100
0011	00110	1011	10111
0100	01001	1100	11000
0101	01010	1101	11011
0110	01100	1110	11101
0111	01111	1111	11110

Single Parity Check Codes - for ALL parity check codes, $\mathrm{d}_{\text {min }}=2$ and Minimum Hamming

Distance ($\mathrm{d}_{\text {min }}$)

Effectiveness of Single Parity Check

original codeword: $b=\left[b_{1} b_{2} b_{3} \ldots b_{n}\right]$
received codeword: $b^{\prime}=\left[b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime} \ldots b_{n}^{\prime}\right]$
error vector:

$$
e=\left[e_{1} e_{2} e_{3} \ldots e_{n}\right]
$$

1	0	0	1	1	0	0

1	1	0	1	1	1	0	1

0	1	0	0	0	1	0	0

$$
e_{k}= \begin{cases}1, \text { if } & b_{k} \neq b_{k}^{\prime} \\ 0, & \text { if } \\ b_{k}=b_{k}^{\prime}\end{cases}
$$

(1) Random Error Vector - there are 2^{n} possible error (e) vectors Channel Model all error are equally likely

- e.g. e=[lllllll 00000000 and e=[11111111] are equally likely
- 50% of error vectors have an even \# of 1s, 50% of error vectors have an odd \# of 1s
- probability of error detection failure $=0.5$
- not very realistic channel model !!!
(2) Random Bit Error - bit errors occur independently of each other Channel Model $\mathrm{p}_{\mathrm{b}}=$ prob. of error in a single-bit transmission
(2.1) probability of single - where $w(e)$ represents the number of 1 s in e bit error ($w(e)=1$)
- bit-error occurs at an arbitrary (but particular) position

$$
\begin{gathered}
e_{1}=0 \quad e_{2}=0 \quad e_{3}=1 \quad e_{n-2}=0 \quad e_{n-1}=0 \quad e_{n}=0 \\
P(w(e)=1)=\underbrace{\left(1-p_{b}\right)} \cdot\left(1-p_{b}\right) \cdot p_{b} \cdot \cdots \cdot\left(1-p_{b}\right) \cdot\left(1-p_{b}\right) \cdot\left(1-p_{b}\right)
\end{gathered}
$$

probability of correctly
transmitted bit

$$
\mathrm{P}(w(e)=1)=\left(1-\mathrm{p}_{\mathrm{b}}\right)^{\mathrm{n}-1} \cdot \mathrm{p}_{\mathrm{b}}
$$

(2.2) probability of two bit errors: $w(e)=2$

$$
\begin{aligned}
& \mathrm{P}(w(e)=2)=\left(1-\mathrm{p}_{\mathrm{b}}\right)^{n-2} \cdot\left(\mathrm{p}_{\mathrm{b}}\right)^{2}=\left(1-\mathrm{p}_{\mathrm{b}}\right)^{n-1} \cdot \mathrm{p}_{\mathrm{b}}\left(\frac{\mathrm{p}_{\mathrm{b}}}{1-\mathrm{p}_{\mathrm{b}}}\right)<1, \text { since } \underline{p}_{\underline{b}}<0.5 \\
& \mathrm{P}(w(e)=2)=\mathrm{P}(w(e)=1) \cdot\left(\frac{\mathrm{p}_{\mathrm{b}}}{1-\mathrm{p}_{\mathrm{b}}}\right)<\mathrm{P}(w(e)=1)
\end{aligned}
$$

(2.3) probability of $w(e)=k$ bit errors: $w(e)=k$

$$
\mathrm{P}(w(e)=k)=\left(1-\mathrm{p}_{\mathrm{b}}\right)^{n-k} \cdot\left(\mathrm{p}_{\mathrm{b}}\right)^{\mathrm{k}}=\left(1-\mathrm{p}_{\mathrm{b}}\right)^{\mathrm{n}-1} \cdot \mathrm{p}_{\mathrm{b}} \cdot\left(\frac{\mathrm{p}_{\mathrm{b}}}{1-\mathrm{p}_{\mathrm{b}}}\right)^{\mathrm{k}-1}=\mathrm{P}(w(e)=1) \cdot(\mathrm{a})^{\mathrm{k}-1}
$$

$$
\mathrm{P}(w(e)=k)<\ldots<\mathrm{P}(w(e)=2)<\mathrm{P}(w(e)=1)
$$

(2.4) probability that single parity check fails?!

$\mathrm{P}($ error detection failure $)=\mathrm{P}($ error patterns with even number of 1 s$)=$

$$
\begin{aligned}
= & \mathrm{P}(\text { any } 2 \text { bit error })+\mathrm{P}(\text { any } 4 \text { bit error })+\mathrm{P}(\text { any } 6 \text { bit error })+\ldots= \\
= & (\# \text { of } 2-\text { bit errors }) * \mathrm{P}(w(e)=2)+ \\
& +(\# \text { of } 4-\text { bit errors }) * \mathrm{P}(w(e)=4)+ \\
& +(\# \text { of } 6-\text { bit errors }) * \mathrm{P}(w(e)=6)+\ldots
\end{aligned}
$$

number of combinations ' n choose k ':

$$
\text { (\# of } k \text { - bit errors) }=\binom{n}{k}=\frac{\mathrm{n}!}{\mathrm{k}!(\mathrm{n}-\mathrm{k})!} \quad \begin{array}{ll|l|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
$$

$$
P(\text { error detection failure })=\binom{n}{2} p_{b}^{2}\left(1-p_{b}\right)^{n-2}+\binom{n}{4} p_{b}^{4}\left(1-p_{b}\right)^{n-4}+\binom{n}{6} p_{b}^{6}\left(1-p_{b}\right)^{n-6}+\ldots
$$

Example [probability of single parity check error detection failure]

Assume there are $\mathrm{n}=32$ bits in a codeword (packet). Probability of error in a single bit transmission $p_{b}=10^{-3}$.
Find the probability of error-detection failure.

$$
\begin{gathered}
\mathrm{P}(\text { error detection failure })=\binom{32}{2} \mathrm{p}_{\mathrm{b}}^{2}\left(1-\mathrm{p}_{\mathrm{b}}\right)^{30}+\binom{32}{4} \mathrm{p}_{\mathrm{b}}^{4}\left(1-\mathrm{p}_{\mathrm{b}}\right)^{28}+\binom{32}{6} \mathrm{p}_{\mathrm{b}}^{6}\left(1-\mathrm{p}_{\mathrm{b}}\right)^{26}+\ldots \\
\binom{32}{2} \mathrm{p}_{\mathrm{b}}^{2}\left(1-\mathrm{p}_{\mathrm{b}}\right)^{30} \approx \frac{32 * 31}{2}\left(10^{-3}\right)^{2}=496 * 10^{-6} \\
\binom{32}{4} \mathrm{p}_{\mathrm{b}}^{4}\left(1-\mathrm{p}_{\mathrm{b}}\right)^{28} \approx \frac{32 * 31 * 30 * 29}{2 * 3 * 4}\left(10^{-3}\right)^{4}=35960 * 10^{-12} \\
\mathrm{P}(\text { error detection failure })=496 * 10^{-6}=4.96 * 10^{-4} \approx \frac{1}{2000}
\end{gathered}
$$

Approximately, 1 in every 2000 transmitted 32-bit long codewords is corrupted with an error pattern that cannot be detected with single-bit parity check.

Error Detection: 2-D Parity Check

Two Dimensional - a block of bits is organized in a table (rows \& columns) Parity Check a parity bit is calculated for each row and column

- 2-D parity check increases the likelihood of detecting burst errors
- all 1-bit errors CAN BE DETECTED and CORRECTED
- all 2-, 3- bit errors can be DETECTED
- 4- and more bit errors can be detected in some cases
- drawback: too many check bits !!!

Example [effectiveness of 2-D parity check]

a. Design of row and column parities

b. One error affects two parities

d. Three errors affect four parities

c. Two errors affect two parities

e. Four errors cannot be detected

Example [2-D parity check]

Suppose the following block of data, error-protected with 2-D parity check, is sent: 1010100100111001110111011110011110101010.

However, the block is hit by a burst noise of length 8, and some bits are corrupted. 1010001110001001110111011110011110101010.

Will the receiver be able to detect the burst error in the sent data?

1010100	1	1010001
0011100	1	1000100
1101110	1	1101110
1110011	1	1110011
10	1	
1010101	0	1010101

Signed Number Representation

http://en.wikipedia.org/wiki/Signed number representations

8 bit signed magnitude

Binary	Signed	Unsigned
00000000	+0	0
00000001	1	1
\ldots	\ldots	\ldots
01111111	127	127
10000000	-0	128
10000001	-1	129
\ldots	\ldots	\ldots
11111111	-127	255

8 bit ones' complement

Binary value	Ones' complement interpretation	Unsigned interpretation
00000000	+0	0
00000001	1	1
\ldots	\ldots	\ldots
01111101	125	125
01111110	126	126
01111111	127	127
10000000	-127	128
10000001	-126	129
10000010	-125	130
\ldots	\ldots	\ldots
11111110	-1	254
11111111	-0	255

(Internet) Checksum - error detection method used by IP, TCP, UDP !!!

- checksum calculation:
- IP/TCP/UDP packet is divided into n-bit sections
- n-bit sections are added using " 1 -s complement arithmetic" - the sum is also n-bits long!
- the sum is complemented to produce checksum (complement of a number in 1-s arithmetic is the negative of the number)
- advantages:
- relatively small packet overhead is required n bits added regardless of packet size
- easy / fast to implement in software
- disadvantages:
- weak protection compared to CRC - e.g. will NOT detect misordered bytes/words !!!
- detects all errors involving an odd number of bits and most errors involving an even number of bits

Sender:

- data is divided into k sections each n bits long
- all sections are added using 1-s complement to get the sum
- the sum is bit-wise complemented and becomes the checksum
- the checksum is sent with the data

Example [Internet Checksum]

Suppose the following block of 8 bits is to be sent using a checksum of 4 bits: $1100 \mathbf{1 0 1 0}$. Find the checksum of the given bit sequence.

1-s complement addition:
Perform standard binary addition. If a carry-out ($>\mathbf{n}^{\text {th }}$) bit it produced, swing that bits around and add it back into the summation.

Negative binary numbers:
Negative binary numbers are
bit-wise complement of corresponding positive numbers.

Suppose the receiver receives the bit sequence and the checksum with no error.

	1100
	1010
	1000
sum:	11110
$1-s$ complement addition:	1111
bit-wise complement:	0000

When the receiver adds the three blocks, it will get all 1s, which, after complementing, is all 0 s and shows that there is no error.

If one or more bits of a segment are damaged, and the corresponding bit of opposite value in a second segment is also damaged, the sums of those columns will not change and the receiver will not detect the problem. ©

Example [Internet Checksum]

Suppose the following block of 16 bits is to be sent using a checksum of 8 bits. 10101001 00111001. The numbers are added using one's complement:

10101001
00111001
00000000
Sum 11100010
Checksum 00011101
The pattern sent is 101010010011100100011101.
Now suppose the receiver receives the pattern with no error.
101010010011100100011101
When the receiver adds the three blocks, it will get all 1s, which, after complementing, is all 0 s and shows that there is no error.

10101001
00111001
00011101

Sum
Complement

11111111
00000000 means that the pattern is OK.

Example [Internet Checksum]

Now suppose that in the previous example, there was a burst error of length 5 that affected 4 bits.

$$
10101111111100100011101
$$

When the receiver added the three sections, it got
10101111
11111001
00011101
Partial Sum 11000101
Checksum 11000110
Complement
00111001 the pattern is corrupted.

