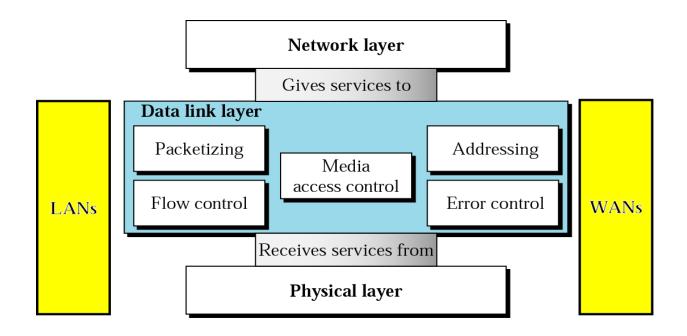
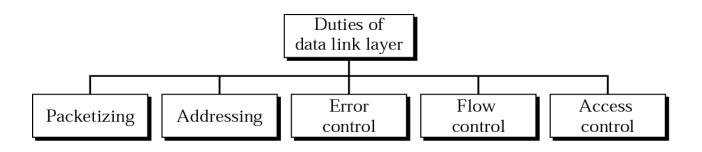
Error Control (1)

1

Required reading: Forouzan 10.1, 10.2 Garcia 3.9.1, 3.9.2, 3.9.3

CSE 3213, Fall 2015 Instructor: N. Vlajic





Error Control

Why Error – data sent from one computer to another should be transferred reliably – unfortunately, the physical link cannot guarantee that all bits, in each frame, will be transferred without errors

• error control techniques are aimed at improving the error-rate performance offered to upper layer(s), i.e. end-application

Probability of - aka bit error rate (BER):Single-Bit• wireless medium: $p_b=10^{-3}$ Error• copper-wire: $p_b=10^{-6}$

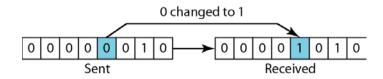
• fibre optics: p_b=10⁻⁹

Approaches to Error Control

- (1) <u>Error Detection</u> + Automatic Retrans. Request (ARQ)
 - fewer overhead bits ©
 - return channel required 😕
 - longer error-correction process and waste of bandwidth when errors are detected $\boldsymbol{\otimes}$
- (2) Forward Error Correction (FEC)
 - error detection + error correction

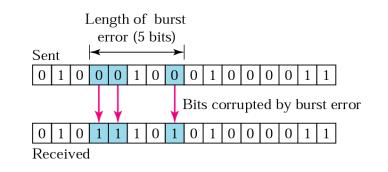
Types of Errors (1) Single Bit Errors

 only one bit in a given data unit (byte, packet, etc.) gets corrupted



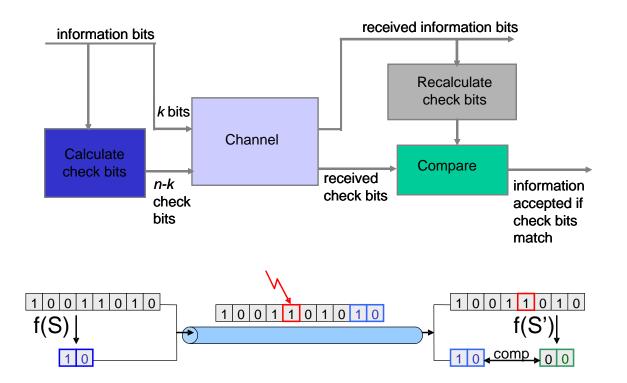
(2) Burst Errors

- two or more bits in the data unit have been corrupted
- errors do not have to occur in consecutive bits
- burst errors are typically caused by external noise (environmental noise)
- burst errors are more difficult to detect / correct

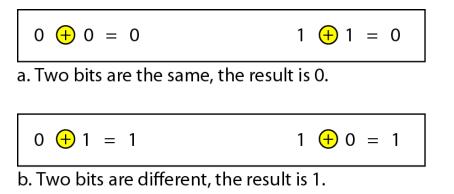


Key Idea of – **redundancy**!!! – add enough extra information (bits) for **Error Control** detection / correction of errorors at the destination

- redundant bits = 'compressed' version of original data bits
- <u>error correction requires more redundant bits than error</u> <u>detection</u>
- more redundancy bits ⇒ better error control ☺ ⇒ more overhead ⊗



Modulo 2 arithmetic is performed digit by digit on binary numbers. Each digit is considered independently from its neighbours. Numbers are not carried or borrowed.



	1	0	1	1	0	
+	1	1	1	0	0	_
	0	1	0	1	0	-

c. Result of XORing two patterns

Hamming Distance – Between 2 Codewords

- number of differences between corresponding bits
 - can be found by applying XOR on two codewords and counting number of 1s in the result

<u>Minimum Hamming</u> – <u>Distance</u> (d_{min}) <u>in a</u> <u>Code</u>

- minimum Hamming distance between all possible pairs in a set of codewords
 - d_{min} bit errors will make one codeword look like another
 - larger d_{min} better robustness to errors

Example [k=2, n=5 code]

Code that adds 3 redundant bits to every 2 information bits, thus resulting in 5-bit long codewords.

	Dataword	Codeword		
1	00	00000	4	
/	01	01011 11110	Any 1 bit and 2 bit	
Any 1-bit error will	10	10101	Any 1-bit and 2-bit errors <u>will be</u>	
not be detected.	11	11110	detected.	