Digital Transmission of Analog Data:

1

PCM and Delta Modulation

Required reading: Forouzan 4.2 Garcia 3.3.2 and 3.3.3

CSE 3213, Fall 2015 Instructor: N. Vlajic

Digital Transmission of Analog Data

Digitization – process of converting analog data into digital signal

- example: telephone system
 - human voice ↔ analog data ↔ analog signal ?!
 - analog signal is sensitive to noise, especially over long distance (cannot be perfectly reconstructed)
 - solution:
 - (1) digitize the analog signal at the sender
 - (2) transmit digital signal
 - (3) convert digital signal back to analog data at the receiver

Digital Transmission of Analog Data (cont.)

Example [PCM procedure]

Digital Transmission of Analog Data (cont.)

Digitization– aka Pluse Code Modulation (PCM), consists of two stepsProcedure(1) sampling – obtain signal values at equal intervals (T)

(2) **quantization** – approximate samples to certain values

Sampling

Sampling – aka Pulse Amplitude Modulation (PAM)

- "digitization in time" sampling process results in signal that is <u>discrete in time but analog in amplitude</u>!
- choice of sampling interval T is determined by how fast a signal changes, i.e. frequency content of the signal

"Nyquist Sampling Rate" Theorem: To ensure accurate reproduction of an analog signal, the sampling rate must be <u>at least</u> 2*(the highest signal frequency). sampling rate = $\frac{1}{T} = 2 * \max_signal_freq$

Sampling (cont.)

Example [Recovery of a sampled sine wave for different sampling rates]

a. Nyquist rate sampling: $f_s = 2 f$

b. Oversampling: f_s = 4 f

