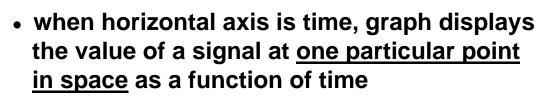
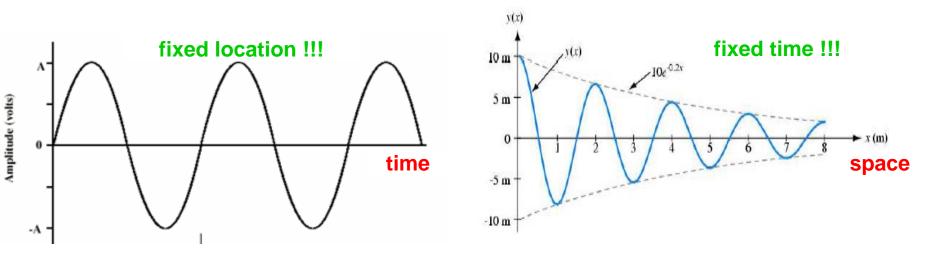

1

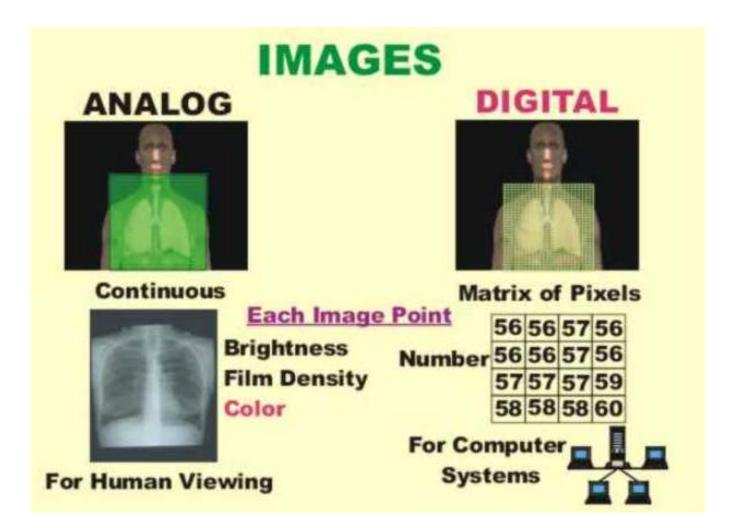

Flow of Electrons Through a Conductor ...


https://electronicspani.com/what-is-electric-current/

Signal Representation

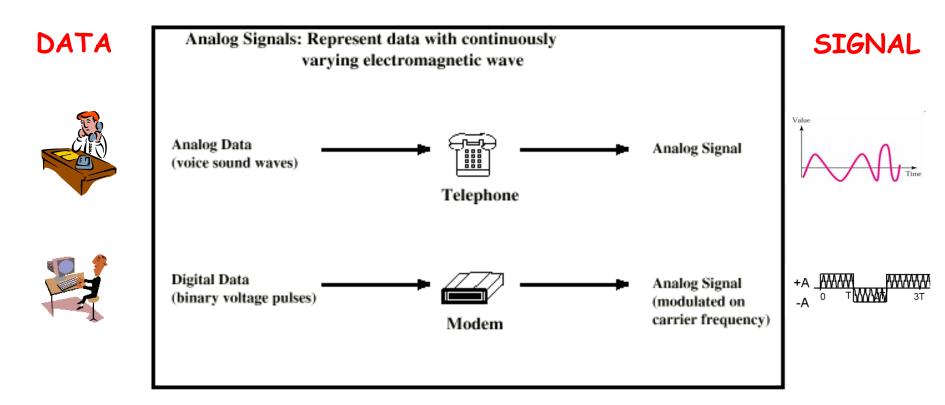
Signal Representation – typically in 2D space, as a function of <u>time</u>, <u>space</u> or frequency

 when horizontal axis is space, graph displays the value of a signal at <u>one particular point in</u> <u>time</u> as a function of space


The time- and space- representation of a signal often resemble each other, though the signal envelope in the space-representation is different (signal attenuates over distance).

- Data vs. Signal
- Analog vs. Digital
- Analog Signals
 - Simple Analog Signals
 - Composite Analog Signals
- Digital Signals

Analog vs. Digital

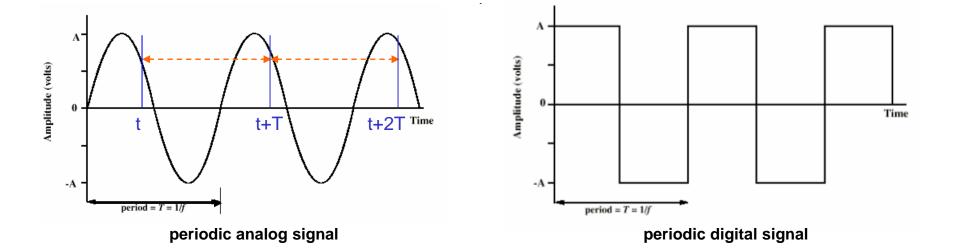

Analog vs. Digital Data •	analog data – representation variable takes on continuous values in some interval, e.g. voice, temperature, etc. recording/reading
•	digital data – representation variable takes on discrete (a <u>finite & countable number</u> of) values in a given interval, e.g. text, digitized images, etc.
Analog vs. Digital Signal	 analog signal – signal that is <u>continuous</u> in time and can assume an <u>infinite</u> number of values in a given range (continuous in time and value)
	• discrete (digital) signal – signal that is continuous in time and assumes only a <u>limited</u> number of values (maintains a constant level and then changes to another constant level)

Stallings, pp. 65 "This is an idealized definition. In fact, the transition from one voltage to another is not instantaneous, but there is a small transition period." Analog vs. digital data ...

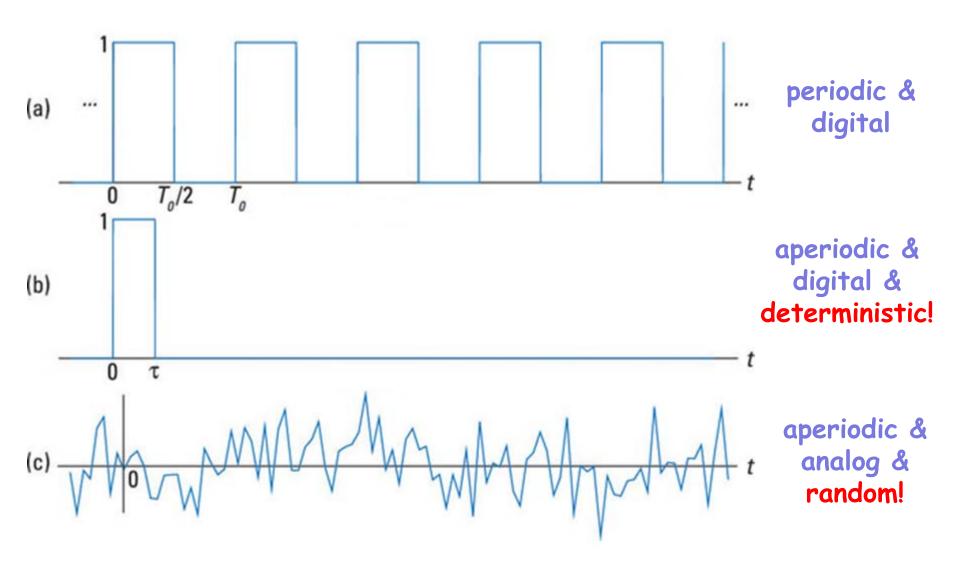
Analog vs. Digital (cont.)

Both analog and digital data can be transmitted using either analog or digital signals.

example: analog signaling of analog and digital data


... will talk more about this later ...

Analog vs. Digital (cont.)


 Periodic vs. Aperiodic
 periodic signal – completes a pattern within some measurable time frame, called a <u>period</u> (T), and then repeats that pattern over subsequent identical periods

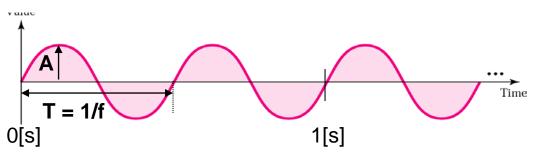
 $\exists T \in R \quad s.t. \quad s(t+T) = s(t), \forall t \in \langle -\infty, +\infty \rangle$

- T smallest value that satisfies the equation
- T is (typically) expressed in seconds
- aperiodic signal changes without exhibiting a pattern that repeats over time

Different types of signals (analog, digital, periodic, aperiodic, ...)

- Data vs. Signal
- Analog vs. Digital
- Analog Signals
 - Simple Analog Signals
 - Composite Analog Signals
- Digital Signals

Analog Signals


Classification of Analog Signals

The origin is usually taken as the <u>last previous</u> passage through zero from the negative to the positive direction.

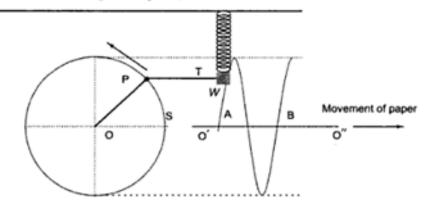
- (1) Simple Analog Signal cannot be decomposed into simpler signals
 - <u>sinewave</u> most fundamental form of <u>periodic</u> analog signal – mathematically described with <u>3 parameters</u>

 $s(t) = A \cdot sin(2\pi ft + \varphi)$

- (1.1) peak amplitude (A) absolute value of signal's highest intensity unit: volts [V]
- (1.2) frequency (f) number of periods in one second
 unit: hertz [Hz] = [1/s] <u>inverse of period (T)</u>!
- (1.3) phase (φ) absolute position of the waveform
 relative to an <u>arbitrary origin</u> unit: degrees [⁰]
 or radians [rad]

(2) Composite Analog Signal – composed of multiple sinewaves Sine wave pattern occurs often in nature, including ocean waves, sound waves, and light waves.

https://en.wikipedia.org/wiki/Sine_wave



4 Simple Harmonic Motion (SHM)

Sinusoidal waves are not mathematical abstractions, they can be produced in the real world by a phenomenon called **Simple Harmonic Motion** (SHM). An SHM is a specific type of oscillation exhibited by the spring loaded weight in Fig. 2.7. Assume that point P is rotating along a circle with uniform speed. A spring loaded weight W is attached to the point P with a flexible string T. As P moves along the circle in the anti-clockwise direction, the weight W attached to P oscillates up and down in synchronism. If a pen is attached to the backside of W which marks on a paper moving slowly to the right to represent the flow of time, the pen would trace out a sinusoidal curve. If ω is the angular frequency of the point P in radian/sec, then the frequency of the generated wave is given by:

 $f = \omega/2\pi$

where f is in cycles/sec. This is apparent from Fig. 2.7, because as a complete cycle is traced out by the weight W, the point P moves by 2π radians, i.e. a complete circle. In 1 second since f cycles are traced out, the points moves a total of $2\pi f$ radians, which by definition is the angular frequency ω .

Simple Harmonic Motion (SHM)

From "Principles of Multimedia" Googlebooks, by Ranjan Parekh

Simple Analog Signals

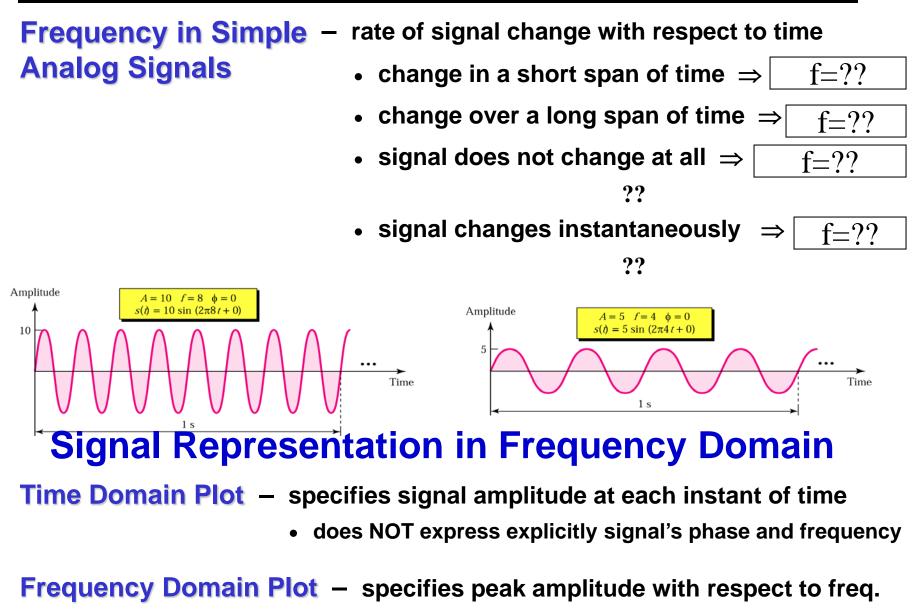
measured in degrees or radians Phase in Simple **Analog Signals** • $360^\circ = 2\pi$ rad • $1^{\circ} = 2\pi/360$ rad 1 rad = (360/2π)^o = 57.29578° phase shift of 360° = shift of 1 complete period phase shift of 180° = shift of 1/2 period phase shift of 90° = shift of 1/4 period Amplitude Amplitude Amplitude **5**V **1s** Time Time Time 1/4 cycle 1/2 cycle

 $\phi = 0^{\circ} \text{ or } 360^{\circ}$

 $\phi = 90^{\circ}$

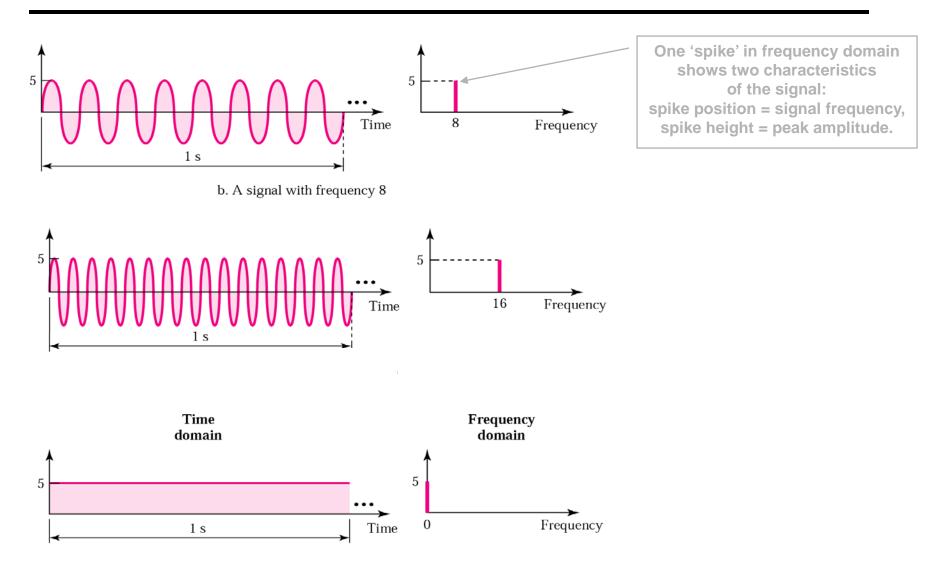
φ = 180°

Example [period (T) and frequency (f)]

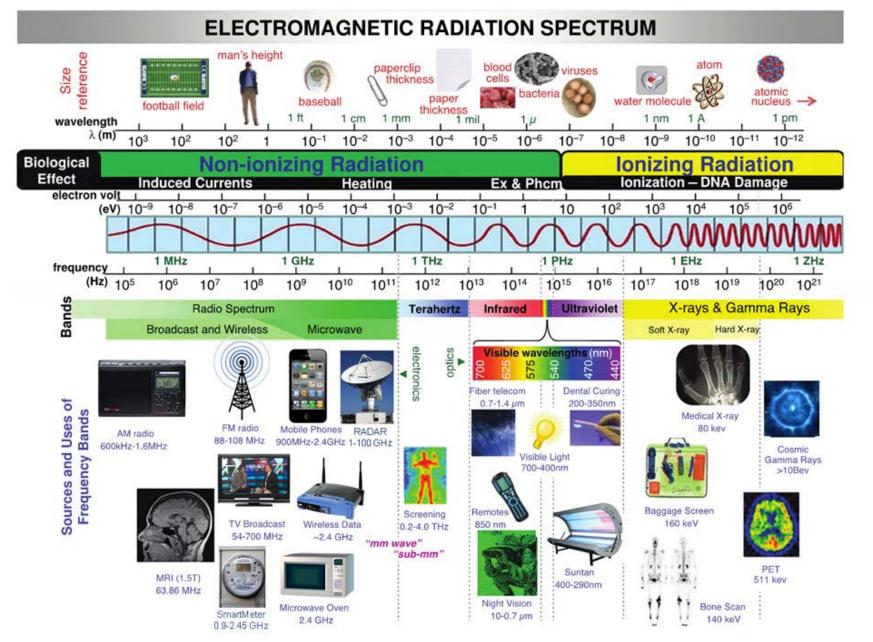

Unit	Equivalent	Unit	Equivalent
seconds (s)	1 s	hertz (Hz)	1 Hz
milliseconds (ms)	10 [–] 3 s	kilohertz (KHz)	10 ³ Hz
microseconds (μs)	10 ^{–6} s	megahertz (MHz)	10 ⁶ Hz
nanoseconds (ns)	10 ^{–9} s	gigahertz (GHz)	10 ⁹ Hz
picoseconds (ps)	10 ⁻¹² s	terahertz (THz)	10 ¹² Hz

units of period and respective frequency

(a) Express a period of 100 ms in <u>micro</u>seconds.


100 ms = 100×10^{-3} s = $100 \times 10^{-3} \times 10^{6}$ µs = 10^{5} µs

(b) Express the corresponding frequency in <u>kilo</u>hertz. $100 \text{ ms} = 100 \times 10^{-3} \text{ s} = 10^{-1} \text{ s}$ $f = 1/10^{-1} \text{ Hz} = 10 \times 10^{-3} \text{ KHz} = 10^{-2} \text{ KHz}$



phase CANNOT be shown in the frequency domain

Simple Analog Signals

Analog signals are best represented in the frequency domain.

http://earthguide.ucsd.edu/eoc/special_topics/teach/sp_climate_change/p_emspectrum_interactive.html http://www-tc.pbs.org/wgbh/nova/assets/swf/1/electromagnetic-spectrum/electromagnetic-spectrum.swf Fourier Analysis – <u>any composite signal</u> can be represented as a combination of simple sine waves with different frequencies, phases and amplitudes

 $s(t) = A_1 sin(2\pi f_1 t + \varphi_1) + A_2 sin(2\pi f_2 t + \varphi_2) + ...$

 <u>periodic composite signal</u> (period=T, freq.= f₀=1/T) can be represented as a sum of simple sines and/or cosines known as *Fourier series*:

$$s(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left[A_n \cos(2\pi n f_0 t) + B_n \sin(2\pi n f_0 t) \right]$$

With the aid of good table of integrals, it is easy to determine the frequency-domain nature of many signals.

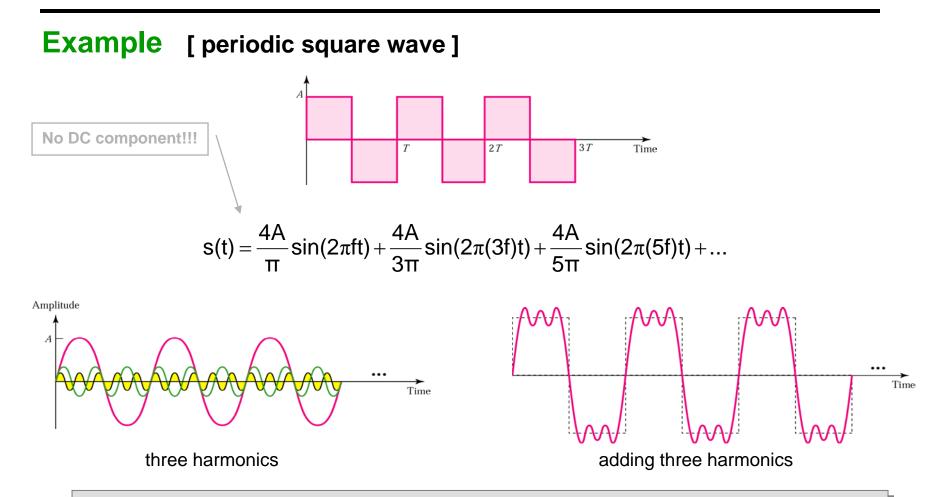
$$B_n = \frac{2}{T} \int_0^T s(t) \sin(2\pi n f_0 t) dt, \quad n = 1, 2, 3, ...$$

 $A_n = \frac{2}{T} \int_{0}^{1} s(t) \cos(2\pi n f_0 t) dt, \quad n = 0, 1, 2, ...$

- f₀ is referred to as '<u>fundamental frequency</u>'
- integer multiples of f₀ are referred to as <u>harmonics</u>

Angular Frequency – aka radian frequency – number of 2π revolutions during a single period of a given signal

$$\omega = \frac{2\pi}{T} = 2\pi \cdot f$$


• simple multiple of ordinary angular frequency

$$s(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} [A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t)]$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(n\omega_0 t) dt, \quad n = 0, 1, 2, ...$$

$$B_n = \frac{2}{T} \int_0^T s(t) \sin(n\omega_0 t) dt, \quad n = 1, 2, ...$$

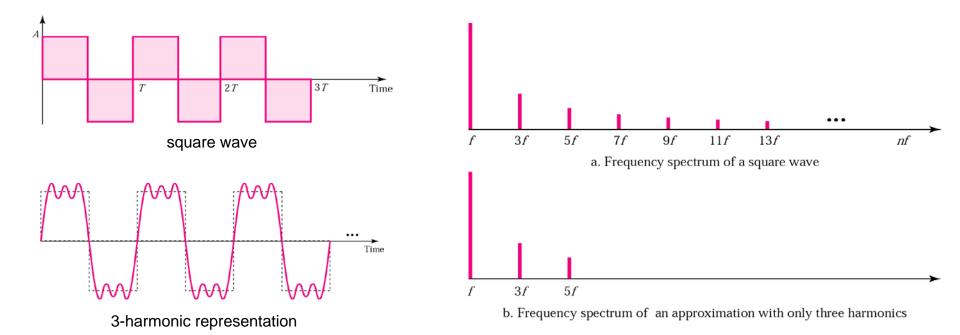
Composite Analog Signals (cont.)

With three harmonics we get an approximation of a square wave. To get the actual square, all harmonics up to ∞ should be added.

https://en.wikipedia.org/wiki/File:Fourier_series_square_wave_circles_animation.gif http://www.acs.psu.edu/drussell/Demos/Fourier/Fourier.html http://www.nickkasprak.com/blog/fourier-series-animator

Composite Analog Signals (cont.)

Example [composite analog signal]


😹 Fourier: Making Waves (3.06) — 🗖											_ 🗆 🗙		
<u>F</u> ile	Eile Options Help												
	Discrete 🔪	Wave Gar	ne 🔪	Discre	ete to Co	ontinuo	ous						
Amplitudes	A ₁ 1.00 1- 0.5 -0.5 -1-	A ₂ 0.47	A ₃ 0.23	A ₄ 0.07	A ₅ 0.01	A ₆ 0.00	A ₇ 0.00	A ₈ 0.00	A ₉ 0.00	A ₁₀ 0.00	A ₁₁ 0.00	n	Preset Functions Function: custom
Harmonics	1 0.5 0 -0.5 -1 -0.39				0					x (m)			Function of: space (x) Image: space (x) Image: space (x)<
Sum	1 0.5 -0.5 -1 -0.39				0		<u> </u>			× (m)	Auto scal	e	Wavelength (A) V Expand sum Sound controls Sound A Reset All

https://phet.colorado.edu/en/simulation/fourier

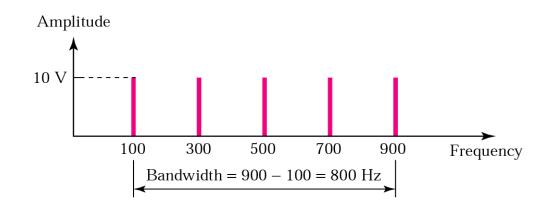
Frequency Spectrum – range (set) of frequencies that signal contains of Analog Signal

Absolute Bandwidth – width of signal spectrum: B = f_{highest} - f_{lowest} of Analog Signal

Effective Bandwidth– range of frequencies where signal contains mostof Analog Signalof its power/energy

Example [frequency spectrum and bandwidth of analog signal]

A periodic signal is composed of five sinewaves with frequencies of 100, 300, 500, 700 and 900 Hz.


What is the **bandwidth** of this signal?

Draw the **frequency spectrum**, assuming all components have a max amplitude of 10V.

Solution:

$$B = f_{highest} - f_{lowest} = 900 - 100 = 800 Hz$$

The spectrum has only five spikes, at 100, 300, 500, 700, and 900.

