Connecting Mainframes - Option 1: Full Mesh / Direct Link Infrastructure

NIC (Network Interface Card)

• piece of hardware that allows a computer to 'communicate' with other computers over a network

Connecting Mainframes - Better Solution: Networked (Switched) Infrastructure!!!

Router / Packet Switch

dedicated device/computer that forwards data
 packets between computer networks

ARPANET: Architecture

- network core consists of packet switches (dedicated minicomputers) to avoid costly full mesh topology
 - each packet switch connects to at least two other switches to provide alternative paths in case of failure
- network transfer messages by breaking them into packets of fixed size
 - long messages ⇒ long delays & higher prob. of error
 - each packet has a header with destination address packets are transmitted independently !!!
- network transfers packets using "store and forward" principle

ARPANET: Distinguishing Features

- each packet switch contains routing / forwarding tables ('next hop per destination' tables)
 - each packet contains destination address ⇒ packet switch looks at routing table and forwards packet in right direction
- connectionless service (QoS not guaranteed)
 - no connection setup is required prior to packet transmission
 - packets are buffered at packet switches to await transmission on appropriate link
 - packets from different users are multiplexed on links between packet switches

ARPANET: Distinguishing Features

- error control between adjacent packet switches enables faster error recovery
 - partial responsibility of IP protocol
- congestion control inside the network prevents buffer overflow at core packet switches
- end-to-end flow control prevents buffer overflow at receiver / sender
 - responsibility of TCP protocol

ARPANET: Applications

- "dumb core, intelligent edges" enabled development of many interesting and useful applications: e-mail, file transfer (FTP), remote login (Telnet)
 - dumb core packet switches are only required / capable of packet forwarding
 - intelligent edges end-devices have considerable CPU and memory capabilities

1950s - 1960s: Terminal-Oriented Computer Networks 1950s - 1960s: Computer to Computer Networks

1960s – 1970s: Computer-to-Computer Networks: the ARPANET – first Wide Area Network (WAN)

1980s: Local Area Networks (LANs)

1980s:The Internet

LAN History

- in 1980s affordable computers become available
 - subsequently, need for <u>low-cost</u>, high-speed, and low error-rate networks arose
 - to interconnect local workstations over small radius < 1km
 - to enable sharing of local resources (printers, servers, etc.)
 - complex packet switching, congestion and flow control were unnecessary
 - variety of LAN topologies emerged, including: bus, ring

Local Area Networks (cont.)

Bus Topology (Ethernet)

- one long cable, so-called backbone, links all devices in the network – similar to single-line mainframe architecture
 - each workstation connects to backbone through Network Interface Card (NIC); each NIC has globally unique address
 - data frames are broadcast into coaxial cable
 - receive: NIC listens to medium for frames with its address
 - send: NIC listens to medium for presence of ongoing transmission if no transmission is found, send frame
 - collision: if frame collides with somebody else's frame, abort transmission and retry later

Local Area Networks (cont.)

Bus Topology (Ethernet)

- advantages: simple & inexpensive installation
- **disadvantages**: 1) backbone = single point of failure
 - 2) <u>collisions \Rightarrow diminishing capacity</u>
 - if two or more devices transmit simultaneously their signals will interfere

Ring Topology – each device has a dedicated point-to-point connection only with the two devices on either side of it

- a small frame token circulates around the ring; only the station that possesses the token is allowed to transmit at any given time
- signal is passed along the ring in one direction, from device to device, until it reaches its destination
- advantages: fairness in access / effective use of bandwidth

 token-passing provides each station with a
 turn to transmit
- disadvantages: entire network will fail if there is a failure in any transmission link or in the mechanism that relays the token

1980s:	The Internet
1980s:	Local Area Networks (LANs)
1960s – 1970s:	Computer-to-Computer Networks: the ARPANET – first Wide Area Network (WAN)
1950s - 1960s:	Terminal-Oriented Computer Networks

Internet = Internetwork – two or more interconnected networks – – network of networks

The Internet: Past

- LANs that emerged in 1970s were different in terms of their underlying technology and operation
- a protocol that would enable communication across multiple dissimilar networks was needed
 - "higher level of abstraction" protocol IP Protocol
- Internet Protocol / Addressing were soon developed and enabled creation of a single global internetwork

The Internet: Present

- spread over 200 countries
- made up of 100,000s of interconnected networks, 10,000,000s of interconnected hosts, and 100,000,000s of users
- still grows exponentially ...

The Internet (cont.)

http://thenextweb.com/socialmedia/2015/01/21/2015-worldwide-internet-mobile-social-media-trends-get-376-pages-data/

The Internet = IP Network

- each component network must contain special packet switch, gateway / router, through which it interconnects with rest of the Internet
- host computers place data in IP packets (data + IP header) and deliver them to nearest router
- router, with help of other routers, attempts to forward packet across the Internet
- "best effort service" IP provides no mechanism to deal with packet loss, corruption, reordering

IP Addressing addressing scheme that fits (inter)network structure: IP address = Net ID + Host ID

- IP packets are routed only based on Net ID in destination IP address
 - routers have to know only major networks, not every single host ⇒ less memory / network update requirements
 - smaller routing tables ⇒ faster routing

