Connecting Mainframes - Option 1:

Full Mesh / Direct Link Infrastructure

NIC (Network Interface Card)

- piece of hardware that allows a computer to 'communicate' with other computers over a network

Connecting Mainframes - Option 1:

Full Mesh / Direct Link Infrastructure

Connecting Mainframes - Better Solution: Networked (Switched) Infrastructure!!!

telegraph network

telephone network

Connecting Mainframes - Option 1: Switched Network Infrastructure

Router / Packet Switch

- dedicated device/computer that forwards data packets between computer networks

Cisco 7200

ARPANET:

 Architecture- network core consists of packet switches (dedicated minicomputers) to avoid costly full mesh topology
- each packet switch connects to at least two other switches to provide alternative paths in case of failure
- network transfer messages by breaking them into packets of fixed size
- long messages \Rightarrow long delays \& higher prob. of error
- each packet has a header with destination address packets are transmitted independently !!!
- network transfers packets using "store and forward" principle

ARPANET: Distinguishing Features

- each packet switch contains routing / forwarding tables ('next hop per destination' tables)
- each packet contains destination address \Rightarrow packet switch looks at routing table and forwards packet in right direction
- connectionless service (QoS not guaranteed)
- no connection setup is required prior to packet transmission
- packets are buffered at packet switches to await transmission on appropriate link
- packets from different users are multiplexed on links between packet switches

ARPANET:
Distinguishing Features

- error control between adjacent packet switches enables faster error recovery
- partial responsibility of IP protocol
- congestion control inside the network prevents buffer overflow at core packet switches
- end-to-end flow control prevents buffer overflow at receiver / sender
- responsibility of TCP protocol

ARPANET:
Applications

- "dumb core, intelligent edges" enabled development of many interesting and useful applications: e-mail, file transfer (FTP), remote login (Telnet)
- dumb core - packet switches are only required / capable of packet forwarding
- intelligent edges - end-devices have considerable CPU and memory capabilities

1950s - 1960s:	Terminal-Oriented Computer Networks
1960s-1970s:	Computer-to-Computer Networks: the ARPANET - first Wide Area Network (WAN)
1980s:	Local Area Networks (LANs)
1980s:	The Internet

LAN History

- in 1980s affordable computers become available
- subsequently, need for low-cost, high-speed, and low error-rate networks arose
- to interconnect local workstations over small radius < 1km
- to enable sharing of local resources (printers, servers, etc.)
- complex packet switching, congestion and flow control were unnecessary
- variety of LAN topologies emerged, including: bus, ring

Bus Topology - one long cable, so-called backbone, links all devices in (Ethernet) the network - similar to single-line mainframe architecture

- each workstation connects to backbone through Network Interface Card (NIC); each NIC has globally unique address
- data frames are broadcast into coaxial cable
- receive: NIC listens to medium for frames with its address
- send: NIC listens to medium for presence of ongoing transmission - if no transmission is found, send frame
- collision: if frame collides with somebody else's frame, abort transmission and retry later

From Computer Desktop Encyclopedia © 1998 The Computer Language Co. Ino

109 Tputer Deshtop Encyclopedia 1998 The Computer Language Co. Inc

Network Hub

Bus Topology (Ethernet)

- advantages: simple \& inexpensive installation
- disadvantages: 1) backbone $=$ single point of failure

2) collisions \Rightarrow diminishing capacity

- if two or more devices transmit simultaneously their signals will interfere

Ring Topology - each device has a dedicated point-to-point connection only with the two devices on either side of it

- a small frame - token - circulates around the ring; only the station that possesses the token is allowed to transmit at any given time
- signal is passed along the ring in one direction, from device to device, until it reaches its destination
- advantages: fairness in access / effective use of bandwidth - token-passing provides each station with a turn to transmit
- disadvantages: entire network will fail if there is a failure in any transmission link or in the mechanism that relays the token

1950s-1960s: Terminal-Oriented Computer Networks
1960s - 1970s: Computer-to-Computer Networks: the ARPANET - first Wide Area Network (WAN)

Local Area Networks (LANs)
The Internet

Internet = Internetwork - two or more interconnected networks -

- network of networks

The Internet:
Past

- LANs that emerged in 1970s were different in terms of their underlying technology and operation
- a protocol that would enable communication across multìple dissìmilar networks was needed
- "higher level of abstraction" protocol - IP Protocol
- Internet Protocol / Addressing were soon developed and enabled creation of a single global internetwork

The Internet: • spread over 200 countries
Present

- made up of 100,000 s of interconnected networks, 10,000,000s of interconnected hosts, and $100,000,000$ s of users
- still grows exponentially ...

GLOBAL DIGITAL SNAPSHOT

A SNAPSHOT OF THE WORLD'S KEY DIGITAL STATISTICAL INDICATORS

TOTAL	ACTIVE	ACTIVE SOCIAL	UNIQUE	ACTIVE MOBILE
POPULATION	INTERNET USERS	MEDIA ACCOUNTS	MOBILE USERS	SOCIAL ACCOUNTS

The Internet = IP Network

- each component network must contain special packet switch, gateway I router, through which it interconnects with rest of the Internet
- host computers place data in IP packets (data + IP header) and deliver them to nearest router
- router, with help of other routers, attempts to forward packet across the Internet
- "best effort service" - IP provides no mechanism to deal with packet loss, corruption, reordering

IP Addressing - addressing scheme that fits (inter)network structure:
IP address = Net ID + Host ID

- IP packets are routed only based on Net ID in destination IP address
- routers have to know only major networks, not every single host \Rightarrow less memory I network update requirements
- smaller routing tables \Rightarrow faster routing

