History of Communication

1

Required reading: Forouzan Ch. 1 Garcia 1.1 and 1.2

CSE 3213, Fall 2015 Instructor: N. Vlajic

History of Telecommunications

Evolution of Communication

http://www.prologprintmedia.co.uk/news-whats-next-in-the-evolution-of-communication

History of Telecommunications (cont.)

http://en.wikipedia.org/wiki/File:Timeline_of_communication_tools.jpg

Types of Communication by Transmission Medium

• Papirus/paper (postal system)

• Optical <u>signals</u> (smoke, optical telegraph)

• Audio <u>signals</u> (drums)

• Electro-magnetic signal

Types of Communication by Number of Senders & Receivers

• Point to Point

• Point to Multipoint

Broadcast

Communication takes place between two end points.

Example: voice (phone) communication.

Communication in which there is <u>one sender and</u> <u>multiple receiver</u>. Senders can alternate.

Example: voice and video conferencing.

Communication in which there is <u>one sender and a</u> <u>large number of receivers</u>. Receivers are generally passive!

Example: radio and TV broadcasting.

Types of Communication by System Complexity

• Direct-Link Communication

Networked Communication

(Tele)communication Networks and Services

Communication Network – set of <u>equipment</u> and <u>facilities</u> that provide a <u>service</u>: *enables transfer of inform. between* users located at various geographical points

- equipment = hardware + software: computers, switches, hubs, routers, modems, servers, etc.
- facilities: copper wires, coaxial cables, optical fiber, air
- examples:
 - telegraph networks
 - telephone networks (wired and wireless)
 - computer networks the Internet
- different networks/services differ in <u>how</u> and <u>what</u> form of data is transferred

Communication Networks and Services (cont.)

Evolution of Communication Networks

- an indicator of the progress in comm.
 technology is the speed at which data can be transmitted measured in [bps]
 - (1) Telegraph Networks 20 bps
 - message switching
 - "store and forward" transmission
 - (2) Telephone Networks 64 kbps
 - circuit switching
 - connection-oriented transmission
 - (3) Internet n*Gbps
 - packet switching
 - "store and forward" transmission
 - diverse computer applications!

Telegraph Networks – Message Switching

Electric Telegraph – human to human transmission of <u>coded messages</u>

- wires are stretched from one point to another; electric current is either allowed to flow through the wires or is broken by a switch called telegraph key
- electric current is used to activate a sounder which makes clicking sounds – short / long times between clicks are decoded into letters from the alphabet
- Morse Telegraph text message is encoded into a sequence of dots and dashes [1873]
 - dots and dashes are converted into short and long pulses of electric current
 - digital transmission system relies only on 2 signallevels
 Morse
 Morse
 Morse
 Morse

http://www.davidsarnoff.org/gallery-ds/DS_Telegraph_key.html

	Morse Code		Morse Code		Morse Code		Morse Code
Α	· —	J	·	S		2	··
В	<u> </u>	К		Т	—	3	···-
С	<u> </u>	L	· — · ·	U	··-	4	····—
D	<u> </u>	М		V	···-	5	
Е	•	Ν	<u> </u>	W	·——	6	_····
F		0		Х		7	
G		Р	·——·	Y		8	
Н		Q		Z		9	
I	•••	R	·—·	1		0	

http://artifaxbooks.com/landline-circuit-photo.JPG

Electric Telegraph <u>Networks</u> – network of interconnected telegraph stations

- (1) a message arrives at a station
- (2) operator stores the message until the desired communication line becomes available

11

- (3) operator then forwards the message to next appropriate station
- "store and forward" message transmission
- intermediate telegraphs = message switching stations

Telephone Networks – Circuit Switching

Bell's Discovery [1876] – voice signals can be transmitted over wires led to invention of telephone

- microphone converts voice pressure variation (sound) into *analogous* electrical signal
- loudspeaker converts electrical signal back into sound

Telegraph vs. Telephone

- telegraph was rather slow and required an expert operator with knowledge of Morse code
- telephone terminal was very simple and did not require any expertise - targeted as a direct service to end users

Telephone Networks – Circuit Switching (cont.)

Microphone: Audio Signal In – Electric Signal Out

https://microphones.audiolinks.com/microphones.shtml

Telephone Networks – Circuit Switching (cont.)

Dedicated Telephone Networks – dedicated lines between each pair

- dedicated lines between each pair of users – existed in early days of telephony
 - O(N²) connections per n users
 - inefficient and costly

Circuit Switched Telephone Networks

- patch cord panels + human operators [1878]
 - only N connections to central office per N users
 - operator connects users 'on demand' establishes (switches) circuits to allow electrical current to flow from inlet to outlet
 - by 1890s the patch panel switches were replaced by automated electromechanical switches that could take signal that contained the destination telephone number and automatically establish a circuit to the desired telephone

- **Connection-Oriented Service!** connection has to be set up before the the actual transfer of information can take place
 - "intelligence" inside the network

Digital Telephone Systems – evolution began with the invention of the transistor and integrated circuits

- (1) analog voice is converted into digital signal \Rightarrow better transmission
- (2) digital switches \Rightarrow faster switching and advanced reservation of resources

Telephone Networks – Circuit Switching (cont.)

