Recursion
Outline

• Induction
• Linear recursion
 – Example 1: Factorials
 – Example 2: Powers
 – Example 3: Reversing an array
• Binary recursion
 – Example 1: The Fibonacci sequence
 – Example 2: The Tower of Hanoi
• Drawbacks and pitfalls of recursion
Outcomes

• By understanding this lecture you should be able to:
 – Use induction to prove the correctness of a recursive algorithm.
 – Identify the base case for an inductive solution
 – Design and analyze linear and binary recursion algorithms
 – Identify the overhead costs of recursion
 – Avoid errors commonly made in writing recursive algorithms
Outline

• **Induction**

• Linear recursion
 – Example 1: Factorials
 – Example 2: Powers
 – Example 3: Reversing an array

• Binary recursion
 – Example 1: The Fibonacci sequence
 – Example 2: The Tower of Hanoi

• Drawbacks and pitfalls of recursion
Divide and Conquer

• When faced with a difficult problem, a classic technique is to break it down into smaller parts that can be solved more easily.

• Recursion uses induction to do this.
History of Induction

- Implicit use of induction goes back at least to Euclid’s proof that the number of primes is infinite (c. 300 BC).
- The first explicit formulation of the principle is due to Pascal (1665).

Euclid of Alexandria, "The Father of Geometry" c. 300 BC

Blaise Pascal, 1623 - 1662
Induction: Review

• Induction is a mathematical method for proving that a statement is true for a (possibly infinite) sequence of objects.

• There are two things that must be proved:
 1. **The Base Case**: The statement is true for the first object
 2. **The Inductive Step**: If the statement is true for a given object, it is also true for the next object.

• If these two statements hold, then the statement holds for all objects.
Induction Example: An Arithmetic Sum

- **Claim:** \[\sum_{i=0}^{n} i = \frac{1}{2} n(n+1) \quad \forall n \in \mathbb{N} \]
- **Proof:**

1. **Base Case.** The statement holds for \(n = 0 \):

 \[\sum_{i=0}^{n} i = \sum_{i=0}^{0} i = 0 \]

 \[\frac{1}{2} n(n + 1) = \frac{1}{2} 0(0 + 1) = 0 \]

 ✓

2. **Inductive Step.** If the claim holds for \(n = k \), then it also holds for \(n = k+1 \).

 \[\sum_{i=0}^{k+1} i = k + 1 + \sum_{i=0}^{k} i = k + 1 + \frac{1}{2} k(k + 1) = \frac{1}{2} (k + 1)(k + 2) \]

 ✓
Recursive Divide and Conquer

• You are given a problem input that is too big to solve directly.
• You imagine,
 – “Suppose I had a friend who could give me the answer to the same problem with slightly smaller input.”
 – “Then I could easily solve the larger problem.”
• In recursion this “friend” will actually be another instance (clone) of yourself.

Tai (left) and Snuppy (right): the first puppy clone.
Recursive Algorithm:

• Assume you have an algorithm that works.
• Use it to write an algorithm that works.

If I could get in,
I could get the key.
Then I could unlock the door
so that I can get in.

Circular Argument!

Example from J. Edmonds – Thanks Jeff!
Friends & Induction

Recursive Algorithm:
• Assume you have an algorithm that works.
• Use it to write an algorithm that works.

To get into my house
I must get the key from a smaller house
Recursive Algorithm:
• Assume you have an algorithm that works.
• Use it to write an algorithm that works.

Use brute force to get into the smallest house.

The “base case”
Outline

• Induction

• **Linear recursion**
 – Example 1: Factorials
 – Example 2: Powers
 – Example 3: Reversing an array

• Binary recursion
 – Example 1: The Fibonacci sequence
 – Example 2: The Tower of Hanoi

• Drawbacks and pitfalls of recursion
Recall: Design Pattern

• A template for a software solution that can be applied to a variety of situations.

• Main elements of solution are described in the abstract.

• Can be specialized to meet specific circumstances.
Linear Recursion Design Pattern

• **Test for base cases**
 – Begin by testing for a set of base cases (there should be at least one).
 – Every possible chain of recursive calls **must** eventually reach a base case, and the handling of each base case should not use recursion.

• **Recurse once**
 – Perform a single recursive call. (This recursive step may involve a test that decides which of several possible recursive calls to make, but it should ultimately choose to make just one of these calls each time we perform this step.)
 – Define each possible recursive call so that it makes **progress** towards a base case.
Example 1

• The factorial function:
 – \(n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n \)

• Recursive definition:
 \[
 f(n) = \begin{cases} \ 1 & \text{if } n = 0 \\ \ n \cdot f(n-1) & \text{else} \end{cases}
 \]

• As a Java method:

  ```java
  // recursive factorial function
  public static int recursiveFactorial(int n) {
      if (n == 0) return 1;  // base case
      else return n * recursiveFactorial(n- 1); // recursive case
  }
  ```
Tracing Recursion

```
recursiveFactorial(4)
  call
  recursiveFactorial(3)
    call
    recursiveFactorial(2)
      call
      recursiveFactorial(1)
        call
        recursiveFactorial(0)
          return 1
          return 1*1 = 1
          return 2*1 = 2
          return 3*2 = 6
          return 4*6 = 24
          final answer
```
Linear Recursion

- recursiveFactorial is an example of linear recursion: only one recursive call is made per stack frame.
- Since there are n recursive calls, this algorithm has $O(n)$ run time.

```
// recursive factorial function
public static int recursiveFactorial(int n) {
    if (n == 0) return 1;  // base case
    else return n * recursiveFactorial(n-1);  // recursive case
}
```
End of Lecture

Oct 6, 2015
Example 2: Computing Powers

• The power function, \(p(x,n) = x^n \), can be defined recursively:

\[
p(x,n) = \begin{cases}
1 & \text{if } n = 0 \\
x \cdot p(x,n-1) & \text{otherwise}
\end{cases}
\]

• Assume multiplication takes constant time (independent of value of arguments).

• This leads to a power function that runs in \(O(n) \) time (for we make \(n \) recursive calls).

• Can we do better than this?
Recursive Squaring

- We can derive a more efficient linearly recursive algorithm by using repeated squaring:

\[
p(x,n) = \begin{cases}
1 & \text{if } n = 0 \\
x \cdot p(x,(n - 1)/2)^2 & \text{if } n > 0 \text{ is odd} \\
p(x,n/2)^2 & \text{if } n > 0 \text{ is even}
\end{cases}
\]

- For example,

\[
2^4 = (2^{4/2})^2 = (2^2)^2 = 4^2 = 16
\]

Naïve method entails 3 multiplies. Recursive squaring entails 2 multiplies.

\[
2^5 = 2(2^{4/2})^2 = 2(2^2)^2 = 2(4^2) = 32
\]

Naïve method entails 4 multiplies. Recursive squaring entails 3 multiplies.
A Recursive Squaring Method

Algorithm Power(x, n):

Input: A number x and integer n

Output: The value x^n

if $n = 0$ then
 return 1

if n is odd then
 $y = \text{Power}(x, (n - 1)/2)$
 return $x \cdot y \cdot y$

else
 $y = \text{Power}(x, n/2)$
 return $y \cdot y$
Analyzing the Recursive Squaring Method

Algorithm Power(x, n):

\[\text{Input:} \text{ A number } x \text{ and integer } n = 0\]

\[\text{Output:} \text{ The value } x^n\]

if \(n = 0 \) then
 return 1
if \(n \) is odd then
 \(y = \text{Power}(x, (n - 1)/2) \)
 return \(x \cdot y \cdot y \)
else
 \(y = \text{Power}(x, n/2) \)
 return \(y \cdot y \)

Although there are 2 statements that recursively call Power, only one is executed per stack frame.

Each time we make a recursive call we halve the value of \(n \) (roughly).

Thus we make a total of \(\log n \) recursive calls. That is, this method runs in \(O(\log n) \) time.
Tail Recursion

• Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.

• Such a method can easily be converted to an iterative method (which saves on some resources).
Example: Recursively Reversing an Array

Algorithm ReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

if i < j then

 Swap A[i] and A[j]

 ReverseArray(A, i + 1, j - 1)

return
Example: Iteratively Reversing an Array

Algorithm IterativeReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

while i < j do
 Swap A[i] and A[j]
 i = i + 1
 j = j - 1

return
Defining Arguments for Recursion

- Solving a problem recursively sometimes requires passing additional parameters.

- **ReverseArray** is a good example: although we might initially think of passing only the array A as a parameter at the top level, lower levels need to know where in the array they are operating.

- Thus the recursive interface is $\text{ReverseArray}(A, i, j)$.

- We then invoke the method at the highest level with the message $\text{ReverseArray}(A, 1, n)$.
Outline

• Induction

• Linear recursion
 – Example 1: Factorials
 – Example 2: Powers
 – Example 3: Reversing an array

• **Binary recursion**
 – Example 1: The Fibonacci sequence
 – Example 2: The Tower of Hanoi

• Drawbacks and pitfalls of recursion
Binary Recursion

- Binary recursion occurs whenever there are **two** recursive calls for each non-base case.

- Example 1: **The Fibonacci Sequence**
The Fibonacci Sequence

- Fibonacci numbers are defined recursively:

\[F_0 = 0 \]
\[F_1 = 1 \]
\[F_i = F_{i-1} + F_{i-2} \quad \text{for } i > 1. \]

The ratio \(F_i / F_{i-1} \) converges to \(\varphi = \frac{1 + \sqrt{5}}{2} = 1.61803398874989... \)

(The “Golden Ratio”)

Fibonacci (c. 1170 - c. 1250)
(aka Leonardo of Pisa)
The Golden Ratio

- Two quantities are in the **golden ratio** if the ratio of the sum of the quantities to the larger quantity is equal to the ratio of the larger quantity to the smaller one.

\[\phi \text{ is the unique positive solution to } \phi = \frac{a + b}{a} = \frac{a}{b}. \]

\[a+b \text{ is to } a \text{ as } a \text{ is to } b \]
The Golden Ratio

The Parthenon

Leonardo

\[\frac{a+b}{a} = \frac{a}{b} \]
Computing Fibonacci Numbers

\[F_0 = 0 \]
\[F_1 = 1 \]
\[F_i = F_{i-1} + F_{i-2} \quad \text{for } i > 1. \]

- A recursive algorithm (first attempt):

\textbf{Algorithm} BinaryFib(k):

\textbf{Input:} Positive integer \(k \)

\textbf{Output:} The \(k \)th Fibonacci number \(F_k \)

\begin{align*}
\text{if } k < 2 & \text{ then} \\
\quad \text{return } k \\
\text{else} & \\
\quad \text{return } \text{BinaryFib}(k - 1) + \text{BinaryFib}(k - 2)
\end{align*}
Analyzing the Binary Recursion Fibonacci Algorithm

- Let n_k denote number of recursive calls made by BinaryFib(k). Then
 - $n_0 = 1$
 - $n_1 = 1$
 - $n_2 = n_1 + n_0 + 1 = 1 + 1 + 1 = 3$
 - $n_3 = n_2 + n_1 + 1 = 3 + 1 + 1 = 5$
 - $n_4 = n_3 + n_2 + 1 = 5 + 3 + 1 = 9$
 - $n_5 = n_4 + n_3 + 1 = 9 + 5 + 1 = 15$
 - $n_6 = n_5 + n_4 + 1 = 15 + 9 + 1 = 25$
 - $n_7 = n_6 + n_5 + 1 = 25 + 15 + 1 = 41$
 - $n_8 = n_7 + n_6 + 1 = 41 + 25 + 1 = 67$

- Note that n_k more than doubles for every other value of n_k. That is, $n_k > 2^{k/2}$. It increases exponentially!
A Better Fibonacci Algorithm

• Use **linear** recursion instead:

 Algorithm LinearFibonacci(k):

 Input: A positive integer k

 Output: Pair of Fibonacci numbers (F_k, F_{k-1})

 if $k = 1$ then
 return $(k, 0)$

 else
 $(i, j) = \text{LinearFibonacci}(k - 1)$
 return $(i + j, i)$

• Runs in $O(k)$ time.
Binary Recursion

- Second Example: The Tower of Hanoi
This job of mine is a bit daunting. Where do I start?

And I am lazy.

Example from J. Edmonds – Thanks Jeff!
At some point, the biggest disk moves. I will do that job.
Tower of Hanoi

To do this, the other disks must be in the middle.
How will these move?
I will get a friend to do it.
And another to move these.
I only move the big disk.
Tower of Hanoi

Code:
algorithm TowersOfHanoi(n, source, destination, spare)
\langle pre-cond \rangle: The \(n \) smallest disks are on \textit{pole}_{source}.
\langle post-cond \rangle: They are moved to \textit{pole}_{destination}.

begin
 if\((n = 1)\)
 Move the single disk from \textit{pole}_{source} to \textit{pole}_{destination}.
 else
 TowersOfHanoi\((n - 1, source, spare, destination)\)
 Move the \(n^{th} \) disk from \textit{pole}_{source} to \textit{pole}_{destination}.
 TowersOfHanoi\((n - 1, spare, destination, source)\)
 end if
end algorithm
Tower of Hanoi

Code:

\[
\text{algorithm } \text{TowersOfHanoi}(n, \text{source}, \text{destination}, \text{spare})
\]

\(\langle \text{pre-cond}\rangle: \) The \(n\) smallest disks are on \(\text{pole}_{\text{source}}\).
\(\langle \text{post-cond}\rangle: \) They are moved to \(\text{pole}_{\text{destination}}\).

begin
 if \((n = 1)\)
 Move the single disk from \(\text{pole}_{\text{source}}\) to \(\text{pole}_{\text{destination}}\).
 else
 \(\text{TowersOfHanoi}(n - 1, \text{source}, \text{spare}, \text{destination})\)
 Move the \(n^{th}\) disk from \(\text{pole}_{\text{source}}\) to \(\text{pole}_{\text{destination}}\).
 \(\text{TowersOfHanoi}(n - 1, \text{spare}, \text{destination}, \text{source})\)
 end if
end algorithm

Time:

\[
T(1) = 1, \\
T(n) = 1 + 2T(n-1) \approx 2T(n-1) \\
\approx 2(2T(n-2)) \approx 4T(n-2) \\
\approx 4(2T(n-3)) \approx 8T(n-3) \\
\approx 2^iT(n-i) \approx 2^n
\]

Exponential again!!
Binary Recursion: Summary

• Binary recursion spawns an exponential number of recursive calls.

• If the inputs are only declining \textit{arithmetically} (e.g., n-1, n-2, \ldots) the result will be an exponential running time.

• In order to use binary recursion, the input must be declining \textit{geometrically} (e.g., n/2, n/4, \ldots).

• We will see efficient examples of binary recursion with geometrically declining inputs when we discuss \textit{heaps} and \textit{sorting}.
Outline

• Induction

• Linear recursion
 – Example 1: Factorials
 – Example 2: Powers
 – Example 3: Reversing an array

• Binary recursion
 – Example 1: The Fibonacci sequence
 – Example 2: The Tower of Hanoi

• Drawbacks and pitfalls of recursion
The Overhead Costs of Recursion

- Many problems are naturally defined recursively.
- This can lead to simple, elegant code.
- However, recursive solutions entail a cost in time and memory: each recursive call requires that the current process state (variables, program counter) be pushed onto the system stack, and popped once the recursion unwinds.
- This typically affects the running time constants, but not the asymptotic time complexity (e.g., $O(n)$, $O(n^2)$ etc.)
- Thus recursive solutions may still be preferred unless there are very strict time/memory constraints.
The “Curse” in Recursion: Errors to Avoid

// recursive factorial function
public static int recursiveFactorial(int n) {
 return n * recursiveFactorial(n - 1);
}

• There must be a base condition: the recursion must ground out!
The “Curse” in Recursion: Errors to Avoid

```
// recursive factorial function
public static int recursiveFactorial(int n) {
    if (n == 0) return recursiveFactorial(n); // base case
    else return n * recursiveFactorial(n- 1); // recursive case
}
```

- The base condition must not involve more recursion!
The “Curse” in Recursion: Errors to Avoid

// recursive factorial function
public static int recursiveFactorial(int n) {
 if (n == 0) return 1; // base case
 else return (n - 1) * recursiveFactorial(n); // recursive case
}

• The input must be converging toward the base condition!
Outline

• Induction

• Linear recursion
 – Example 1: Factorials
 – Example 2: Powers
 – Example 3: Reversing an array

• Binary recursion
 – Example 1: The Fibonacci sequence
 – Example 2: The Tower of Hanoi

• Drawbacks and pitfalls of recursion
Outcomes

• By understanding this lecture you should be able to:
 – Use induction to prove the correctness of a recursive algorithm.
 – Identify the base case for an inductive solution
 – Design and analyze linear and binary recursion algorithms
 – Identify the overhead costs of recursion
 – Avoid errors commonly made in writing recursive algorithms