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Section Summary

Applications of Recurrence Relations
e Fibonacci Numbers
e The Tower of Hanoi
e Counting Problems

Algorithms and Recurrence Relations (not currently
included in overheads)
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Recurrence Relations

(recalling definitions from Chapter 2)

Definition: A recurrence relation for the sequence {a,}
is an equation that expresses a, in terms of one or
more of the previous terms of the sequence, namely,
a, a, .., a,_, for all integers n with n = n,, where n, is
da nonnegative integer.

A sequence is called a solution of a recurrence relation
if its terms satisfy the recurrence relation.

The initial conditions for a sequence specify the terms
that precede the first term where the recurrence
relation takes effect.
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Rabbits and the Fiobonacci Numbers

Example: A young pair of rabbits (one of each
gender) is placed on an island. A pair of rabbits does
not breed until they are 2 months old. After they are 2
months old, each pair of rabbits produces another
pair each month. Find a recurrence relation for the
number of pairs of rabbits on the island after n
months, assuming that rabbits never die.

This is the original problem considered by Leonardo
Pisano (Fibonacci) in the thirteenth century.
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Rabbits and the Fiobonacci Numbers (cont.)
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Modeling the Population Growth of Rabbits on an Island
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Rabbits and the Fibonacci Numbers (cont.)

Solution: Let f, be the the number of pairs of rabbits after n months.

e There are is f; = 1 pairs of rabbits on the island at the end of the
first month.

e We also have f, = 1 because the pair does not breed during the first
month.

e To find the number of pairs on the island after n months, add the
number on the island after the previous month, f, ,, and the
number of newborn pairs, which equals f, ,, because each newborn

pair comes from a pair at least two months old.

Consequently the sequence {f, } satisfies the recurrence relation
f.=f., + f,, for n> 3 with the initial conditions f; =1and f,=1.
The number of pairs of rabbits on the island after n months is given by
the nth Fibonacci number.
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The Tower of Hanoi

In the late nineteenth century, the French
mathematician Edouard Lucas invented a puzzle
consisting of three pegs on a board with disks of
different sizes. Initially all of the disks are on the first
peg in order of size, with the largest on the bottom.

Rules: You are allowed to move the disks one at a
time from one peg to another as long as a larger
disk is never placed on a smaller.

Goal: Using allowable moves, end up with all the
disks on the second peg in order of size with
largest on the bottom.



The Tower of Hanoi (continued)
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The Initial Position in the Tower of Hanoi Puzzle
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The Tower of Hanoi (continued)

Solution: Let {H_} denote the number of moves needed to solve the Tower of Hanoi
Puzzle with n disks. Set up a recurrence relation for the sequence {H,}. Begin with n
disks on peg 1. We can transfer the top n —1 disks, following the rules of the puzzle, to
peg 3 using H,__; moves. = =

N\ ~—
. N
e 4

Peg | Peg 2 Peg 3

First, we use 1 move to transfer the largest disk to the second peg. Then we transfer the
n —1 disks from peg 3 to peg 2 using H,_, additional moves. This can not be done in
fewer steps. Hence,

H, =2H, , +1.

n
The initial condition is H;= 1 since a single disk can be transferred from peg 1 to peg 2 in
one move.



The Tower of Hanoi (continued)

We can use an iterative approach to solve this recurrence relation by repeatedly expressing H, in
terms of the previous terms of the sequence.

Hioon iy
g o I M e R s e |
= 22(2H, 3+1)+2+1=23H, _,+22+2+1

ALY 1 Y0 Ao el A e ey
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=2" —1  using the formula for the sum of the terms of a geometric series

o There was a myth created with the puzzle. Monks in a tower in Hanoi are transferring 64 gold
disks from one peg to another following the rules of the puzzle. They move one disk each day.
When the puzzle is finished, the world will end.

e Using this formula for the 64 gold disks of the myth,
264 —1 = 18,446, 744,073,709,551,615
days are needed to solve the puzzle, which is more than 500 billion years.

* Reve’s puzzle (proposed in 1907 by Henry Dudeney) is similar but has 4 pegs. There is a well-

known unsettled conjecture for the the minimum number of moves needed to solve this puzzle.
(see Exercises 38-45)



Counting Bit Strings

Example 3: Find a recurrence relation and give initial conditions for the number of bit strings of
length n without two consecutive 0s. How many such bit strings are there of length five?

Solution: Let a, denote the number of bit strings of length n without two consecutive 0s. To obtain
a recurrence relation for {a, } note that the number of bit strings of length n that do not have two

consecutive Os is the number of bit strings ending with a 0 plus the number of such bit strings
ending with a 1.

Now assume that n > 3.

e The bit strings of length n ending with 1 without two consecutive Os are the bit strings of length n —1
with no two consecutive Os with a 1 at the end. Hence, there are a,,_, such bit strings.

e The bit strings of length n ending with 0 without two consecutive Os are the bit strings of length n —2
with no two consecutive Os with 10 at the end. Hence, there are a,,_, such bit strings.

We conclude thata, =a,_; +a,_, forn>3.

Number of bit strings
of length n with no
two consecutive 0s:

Any bit string of length n — 1 with
End with a 1: I

no two consecutive 0s A

End with a 0: a,
no two consecutive 0Os =

Any bit string of length n — 2 with ‘ 1 0

Total: a,=a, +a
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Bit Strings (continued)

The initial conditions are:

e a, = 2,since both the bit strings 0 and 1 do not have consecutive Os.
* a, = 3, since the bit strings 01, 10, and 11 do not have consecutive 0s, while 00 does.

To obtain ac, we use the recurrence relation three times to find that:
e a;=a,+a;, =3+2=5

e a,=a;+a,=5+3=8
e a;=a, +a; =8+5=13

Note that {a, } satisfies the same recurrence relation as the Fibonacci
sequence. Since a; = f; and a, =f,, we conclude thata, =f, ., .




Counting the Ways to Parenthesize a
Product

Example: Find a recurrence relation for C,, the number of ways to parenthesize the product of
n + 1 numbers, x, - x; - x, - *** - X,,, to specify the order of multiplication.
For example, C; = 5, since all the possible ways to parenthesize 4 numbers are

(e eI A b b A Sl b A A b A D A Cy s A L b S o))

Solution: Note that however parentheses are inserted in x; - x; - x, - --- - x,,, one “-” operator remains
outside all parentheses. This final operator appears between two of the n + 1 numbers, say x; and x; ;.
Since there are C;, ways to insert parentheses in the product x, - x; - x, - -+ - x; and C,_,_; ways to
insert parentheses in the product x;_; - x;,, " *** - x,,, we have

Cn o COCn—l i Clcn—Q e C171—2611 3 Cn—100

n—1
= Z (BYH B W
k=0

The initial conditions are C; = 1 and C; = 1.

The sequence {C, } is the sequence of Catalan Numbers.
This recurrence relation can be solved using the method
of generating functions; see Exercise 41 in Section 8.4.




Solving Linear Recurrence
Relations

Section 8.2
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Section Summary

Linear Homogeneous Recurrence Relations

Solving Linear Homogeneous Recurrence Relations
with Constant Coefficients.

Solving Linear Nonhomogeneous Recurrence
Relations with Constant Coefficients.



Ltinear Homogeneous Recurrence
Relations

Definition: A linear homogeneous recurrence relation of
degree k with constant coefficients is a recurrence relation
of the form a,=cja,_;+ c,a,_, + ... + ¢ a,_, where

Cy, Cy -...,C are real numbers, and ¢, # 0

* it is linear because the right-hand side is a sum of the previous terms of the sequence each

multiplied by a function of n.
* it is homogeneous because no terms occur that are not multiples of the a;s. Each coefficient

is a constant.
* the degree is k because a, is expressed in terms of the previous k terms of the sequence.

By strong induction, a sequence satisfying such a recurrence relation is uniquely determined
by the recurrence relation and the k initial conditions a, = C{, a, = C; ..., a;,_; = C,_;.




~ Examples of Linear Homogeneous
Recurrence Relations

e P =(1.11)P,, linear homogeneous recurrence
relation of degree one

e f. =f_ +f., linear homogeneous recurrence
relation of degree two

i 2 :
® Ap = Gn—1 + a;_o not linear
e H =2H_,_,+1 not homogeneous
* B. =nB__; coefficients are not constants
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Solving Linear Homogeneous
Recurrence Relations

The basic approach is to look for solutions of the form
a, = ", where r is a constant.

Note that a, = is a solution to the recurrence relation

a,=ca,_;+Cy,d, ,++ca,_, if and only if

M= 4+ o2+ - 4 ¢ 1K,

Algebraic manipulation yields the characteristic equation:
rk— ekl —eyrk 2 — e — T —c, =0

The sequence {a,} with a, =" is a solution if and only if r is a

solution to the characteristic equation.

The solutions to the characteristic equation are called the
characteristic roots of the recurrence relation. The roots are
used to give an explicit formula for all the solutions of the
recurrence relation.

n—k
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Solving Linear Homogeneous Recurrence
Relations of Degree Two

Theorem 1: Let ¢, and c, be real numbers. Suppose
that r* — ¢;r - ¢, = 0 has two distinct roots r, and r.,.
Then the sequence {a,} is a solution to the recurrence
relation a,=c,a,_; +c,a,_, ifand only if

SRR n n
An = AT] + Q2T5

forn=0,1,2,..., where o; and a, are constants.
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Using Theorem 1

Example: What is the solution to the recurrence relation
a,=a, |+ 2a, ,witha,=2and a; =77

Solution: The characteristic equationis > — r —2 = 0.

Its roots are r = 2 and r = —1 . Therefore, {q,} is a solution to the recurrence relation if
and

only if a, = «;2" + a,(—1)", for some constants «; and «,.
To find the constants o, and o, note that

Solving these equations, we find that o, =3 and o, = —1.

Hence, the solution is the sequence {a,} with a,=3-2" — (=1)".
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An Explicit Formula for the Fibonacci Numbers

We can use Theorem 1 to find an explicit formula for the
Fibonacci numbers. The sequence of Fibonacci numbers

satisfies the recurrence relation f,=f _, + f,_, with the
initial conditions: f,=0 and f; = 1.

Solution: The roots of the characteristic equation

r‘’—r—-1=0are
1+/5
2

1-v/5
2

T =

To —
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Fibonacci Numbers (continued)

Therefore by Theorem 1
Jn=01 (HT\/B)R + s (1_2\/3)71

for some constants «; and «,.

Using the initial conditions f, = 0 and f; =1, we have
fJo=o1+a2=0

= (358) woa (55) 1

y g — —

N
Sl

Solving, we obtain ¢t =
Hence, n
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The Solution when there is a Repeated Root

Theorem 2: Let ¢, and c, be real numbers with c, # 0.
Suppose that r? — ¢;r - ¢, = 0 has one repeated root r,.
Then the sequence {a,} is a solution to the recurrence
relation a, = c,a,_, + c,a,_, if and only if

an = Qry + Qanry

forn=20,1,2,..., where a; and o, are constants.
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Using Theorem 2

Example: What is the solution to the recurrence relation
a,=6a, , —9a, ,witha,=1and a, =6?

Solution: The characteristic equation is > —6r+9 = 0.

The only root is r = 3. Therefore, {a,}is a solution to the recurrence relation if and only
if

a,=o;3"+ a,n(3)"
where o; and o, are constants.

To find the constants o, and o, note that
a,=1=a; and a;=6=0,"3+0a,"3.
Solving, we find that o; =1land o, =1 .

Hence,
@ =30 En3ly



Solving Linear Homogeneous Recurrence

Relations of Arbitrary Degree

This theorem can be used to solve linear homogeneous
recurrence relations with constant coefficients of any degree
when the characteristic equation has distinct roots.

Theorem 3: Let ¢, ¢, ,..., ¢, be real numbers. Suppose that the
characteristic equation

! o
[S= G ¢,=0

has k distinct roots ry, r,, ..., ;. Then a sequence {a,} isa
solution of the recurrence relation

an = Clan_l + Czan_z T + Ck an
if and only if
Ap, = 0qT] + QaTy’ + -« + Ty,
forn=0,1, 2, .., where ay, a,,.., o, are constants.

—k



The General Case with Repeated Roots Allowed

Theorem 4: Let c,, c,,..., c; be real numbers. Suppose that the characteristic
equation
rk—crk=1—. =, =0

has t d1st1nct roots ry r2, ..., T, With mult1phc1t1es ml, m,, respectively so
that m; > 1 for i =0, 1 W t and m; + m, + k. Then a sequence {a,}
is a solution of the recurrence relation

Cln - Clan_l o Czan_z A A + Ck a —k
if and only if

anp = (1o+ain+---+ al,ml_lnml_l)fr?
+Hazo +azin + - + om0}
Sy (Oét,o +agin+ -+ Oét,mt—lnmt_l)’r?

forn=0,1, 2, ..., where a;; are constants for 1<i<t and 0<j<m,_,.
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1_in/ear Nonhomogeneous Recurrence
Relations with Constant Coefficients

Definition: A linear nonhomogeneous recurrence relation
with constant coefficients is a recurrence relation of the
form:

A, =C10,_1+ Coly_p + oo + C A, 1+ F(N)

where ¢y, ¢,, ....,c; are real numbers, and F(n) is a function
not identically zero depending only on n.

The recurrence relation
an - Clan_l + Czan_z AR + Ck an_k’
is called the associated homogeneous recurrence relation.
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Linear Nonhomogeneous Recurrence
Relations with Constant Coefficients (cont.)

The following are linear nonhomogeneous recurrence relations
with constant coefficients:

a.=a.  +2°

@ —g o i
a,=3a,_;+ n3”",

a,=d, +d,_,+a,_;+n!

where the following are the associated linear homogeneous
recurrence relations, respectively:

an 3 an—l y
a,=d,_1+d,_»
a,=3a,_4,
d,=dp_1+d, »+ 04, 3
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Solving Linear Nonhomogeneous Recurrence Relations
with Constant Coefficients

Theorem 5: If {a (P} is a particular solution of the
nonhomogeneous linear recurrence relation with
constant coefficients

aQ,=C1a,_1+Co, 5+ +Ca, +F(n)
then every solution is of the form {a,? + a ™}, where

{a M} is a solution of the associated homogeneous
recurrence relation

an " Clan—l + C2an—2 s Ck an—k.



Solving Linear Nonhomogeneous Recurrence Relations
with Constant Coefficients (continued)

Example: Find all solutions of the recurrence relation a, = 3a,_, + 2n.
What is the solution with a, = 3?

Solution: The associated linear homogeneous equation is a, = 3a,,_;.
Its solutions are a,(” = a3", where « is a constant.

Because F(n)= 2n is a polynomial in n of degree one, to find a particular solution we might try a
linear function in n, say p, =cn + d, where c and d are constants. Suppose that p, = cn + d is such a
solution.

Then a, = 3a,_,+ 2n becomes cn +d=3(c(n—1) + d)+ 2n.

Simplifying yields (2 + 2c)n + (2d —3c) = 0. It follows that cn + d is a solution if and only if
2+ 2c =0and 2d —3c = 0. Therefore, cn + dis a solution ifand only ifc = —1and d = —3/2.
Consequently, a,P) = —n —3/2 is a particular solution.

By Theorem 5, all solutions are of the form a, =a,? + a,(" = —n —3/2 + a3", where a is a constant.

To find the solution with a, = 3,let n = 1 in the above formula for the general solution.
Then3=-1—-3/2+ 3« and a=11/6. Hence, the solution is a,= —n —3/2 + (11/6)3™



Divide-and-Conquer
Algorithms and Recurrence
Relations

Section 8.3
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Section Summary

Divide-and-Conquer Algorithms and Recurrence
Relations

Examples

e Binary Search

e Merge Sort

e Fast Multiplication of Integers
Master Theorem

Closest Pair of Points (not covered yet in these slides)
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Divide-and-Conquer Algorithmic
Paradigm

Definition: A divide-and-conquer algorithm works by first
dividing a problem into one or more instances of the same
problem of smaller size and then conquering the problem
using the solutions of the smaller problems to find a
solution of the original problem.

Examples:

 Binary search, covered in Chapters 3 and 5: It works by comparing
the element to be located to the middle element. The original list is
then split into two lists and the search continues recursively in the
appropriate sublist.

« Merge sort, covered in Chapter 5: A list is split into two

approximately equal sized sublists, each recursively sorted by merge
sort. Sorting is done by successively merging pairs of lists.
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Divide-and-Conquer Recurrence Relations

Suppose that a recursive algorithm divides a problem
of size n into a subproblems.

Assume each subproblem is of size n/b.

Suppose g(n) extra operations are needed in the
conquer step.

Then f{n) represents the number of operations to
solve a problem of size n satisisfies the following
recurrence relation:

Ain) = afin/b) + g(n)

This is called a divide-and-conquer recurrence relation.
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Example: Binary Search

Binary search reduces the search for an element in a
sequence of size n to the search in a sequence of size n/2.
Two comparisons are needed to implement this reduction;

e one to decide whether to search the upper or lower half of
the sequence and

e the other to determine if the sequence has elements.

Hence, if f{n) is the number of comparisons required to
search for an element in a sequence of size n, then

fin) = fin/2) + 2

when n is even.
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Example: Merge Sort

The merge sort algorithm splits a list of n (assuming n
is even) items to be sorted into two lists with n/2
items. It uses fewer than n comparisons to merge the
two sorted lists.

Hence, the number of comparisons required to sort a
sequence of size n, is no more than than M(n) where

M(n) = 2M(n/2) + n.
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Example: Fast Multiplication of Integers

An algorithm for the fast multi]ilication of two 2n-bit integers (assuming n is even) first splits each
of the 2n-bit integers into two blocks, each of n bits.

Suppose that a and b are integers with binary expansions of length 2n. Let
a = (ay,_1a3,_3 - @140); and b = (by,_1b,, ;... biby), .
Leta=2"A, +A,, b=2"B; + B;, where
Ap = (Agp_g - Qpp1@y)z , Ag = (Ay_y - 41a0);
B, = (bZn—l e bp1bp)y, By = (bn—l . bybg),.
The algorithm is based on the fact that ab can be rewritten as:
ab = (22" + 2")A,B, +2"(A;—A,)(B, — B;) +(2" + 1)A,B,.
This identity shows that the multiplication of two 2n-bit integers can be carried out using three
multiplications of n-bit integers, together with additions, subtractions, and shifts.
Hence, if f{n) is the total number of operations needed to multiply two n-bit integers, then

f(2n) = 3f(n) + Cn

where Cn represents the total number of bit operations; the additions, subtractions and shifts that
are a constant multiple of n-bit operations.
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Estimating the Size of Divide-and-Conque
Functions

Theorem 1: Let f be an increasing function that
satisfies the recurrence relation

fln) = afin/b) + cnd
whenever n is divisible by b, where a= 1, b is an
integer greater than 1, and c is a positive real number.
Then f(n) IS{ O(nlogba) if a>1
Chdeoml s it o —

Furthermore, when n = b and a #1, where k is a
positive integer,
f(n) ooy Clnlogba o CQ

where C; = f({1) + ¢/(a—1) and C, = —c/(a—1).
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Complexity of Binary Search

Binary Search Example: Give a big-O estimate for
the number of comparisons used by a binary search.

Solution: Since the number of comparisons used by
binary search is f{n) = f{n/2) + 2 where n is even, by
Theorem 1, it follows that f{n) is O(log n).
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Estimating the Size of Divide-and-conquer
Functions (continued)

Theorem 2. Master Theorem: Let f be an increasing
function that satisfies the recurrence relation

fln) = afin/b) + cn

whenever n = b%, where k is a positive integer greater
than 1, and ¢ and d are real numbers with c positive
and d nonnegative. Then

O(n%) ifig b
f(n)is{ O(n%logn) if a="b"
O(nlo8% a) if q > b
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Complexity of Merge Sort

Merge Sort Example: Give a big-O estimate for the
number of comparisons used by merge sort.

Solution: Since the number of comparisons used by
merge sort to sort a list of n elements is less than

M(n) where M(n) = 2M(n/2) + n, by the master theorem
M(n) is O(n log n).



Complexity of Fast Integer
Multiplication Algorithm

Integer Multiplication Example: Give a bi%
number of bit operations used needed to mu
using the fast multiplication algorithm.

Solution: We have shown that f{n) = 3f(n/2) + Cn, when n is even,
where ﬁ(n) is the number of bit operations needed to multiply
two n-bit integers. Hence by the master theorem with a = 3

b=2,c=C,andd = 0 (so that we have the case where a > bd,), it
follows that f{n) is O(n'°83).

-O estimate for the
tiply two n-bit integers

Note that log 3 = 1.6. Therefore the fast multiplication algorithm is a

substantial improvement over the conventional algorithm that uses
O(n?) bit operations.



