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Introduction

Sequences are ordered lists of elements.

¢ 112258
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Sequences arise throughout mathematics, computer
science, and in many other disciplines, ranging from
botany to music.

We will introduce the terminology to represent
sequences and sums of the terms in the sequences.
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Sequences

Definition: A sequence is a function from a subset of
the integers (usually either the set {0, 1, 2, 3, 4, .....} or
{1,2,3,4,....} ) toasetS.

The notation a, is used to denote the image of the

integer n. We can think of a, as the equivalent of
f(n) where fis a function from {0,1,2,.....} to S. We
call a, a term of the sequence.



Sequences

Example: Consider the sequence{an} where

1
gy = = ta,. ] = laaavas

DO | —
| —
|
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Geometric Progression

Definition: A geometric progression is a sequence of the

form:a,ar,ar?,... ar",...

where the mltlal term a and the common ratio r are real
numbers.

Examples:
1. Leta=1andr=-1.Then:

{b,} = {bg,b1,b2,b3,b4,...} = {1,-1,1,-1,1,...}
>. Let a=2andr=5. Then:

febf=deociocncn =12 10502501250 -}
3. Leta=6andr=1/3. Then:

2
{dn}:{d07d17d27d37d47--'}:{6727 _7 }

OJINJ
@INJ
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Arithmetic Progression

Definition: A arithmetic progression is a sequence of the
o o0 da b2d 0

where the initial term a and the common difference d are
real numbers.

Examples:
1. Leta=—-landd=4:

foot adignisr worsangp b L F R Ll lh e
2. Let a=7andd= —3:

e el i
3. Leta=1andd=2:

Yo i b Y
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Strings
Definition: A string is a finite sequence of characters

from a finite set (an alphabet).

Sequences of characters or bits are important in
computer science.

The empty string is represented by A.
The string abcde has length 5.
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Recurrence Relations

Definition: A recurrence relation for the sequence {a,}
is an equation that expresses a, in terms of one or
more of the previous terms of the sequence, namely,
a,a, .. a,, forall integers n with n = n_, where n, is
da nonnegative integer.

A sequence is called a solution of a recurrence relation
if its terms satisfy the recurrence relation.

The initial conditions for a sequence specify the terms
that precede the first term where the recurrence
relation takes effect.



Questions about Recurrence Relations

Example 1: Let {a,} be a sequence that satisfies the
recurrence relationa,=a, + 3 forn=1,2,34,.... and
suppose that a, = 2. What are q,, a, and a,?

|Here a, = 2 is the initial condition. ]

Solution: We see from the recurrence relation that
g =g g P =5
a, =5+3=8
a; =8+3=11
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Questions about Recurrence Relations

Example 2: Let {a,} be a sequence that satisfies the
recurrence relationa, =a,, -a,, forn=2,34,... and
suppose that a, = 3 and @, = 5. What are a, and a;?

|Here the initial conditions are a, = 3 and a, = 5. |

Solution: We see from the recurrence relation
that

a,=a,-ad,=5-3=2

a,=a,-a,=2-5=-3
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Fibonacci Sequence

Definition: Define the Fibonacci sequence, f,,f..f.,--» by:
e Initial Conditions: f,=0, f, =1
e Recurrence Relation: f, =f., +f,,

Example: Find fz,fB,f4,f5 and f, .

Answer:
L=H+f, =1+0=1,
L=hH+fi =1+1=2,
fi=fHL+f,=2+1=3,
fe=f1i+f; =3+2=5
fe=fc+f, =5+3=8.
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Solving Recurrence Relations

Finding a formula for the nth term of the sequence
generated by a recurrence relation is called solving the
recurrence relation.

Such a formula is called a closed formula.

Various methods for solving recurrence relations will
be covered in Chapter 8 where recurrence relations
will be studied in greater depth.

Here we illustrate by example the method of iteration
in which we need to guess the formula. The guess can
be proved correct by the method of induction
(Chapter 5).



Iterative Solution Example

Method 1: Working upward, forward substitution
Let {a,} be a sequence that satisfies the recurrence relation
a, =a,. + 3 for n=2,34,... and suppose that a, = 2.

a, =2+3

¢« —01L) 1)

o 2 e o

a,;_1+3 =2+3:-(n-2)+3=2+3(n-1)

a



Iterative Solution Example

Method 2: Working downward, backward substitution

Let {a,} be a sequence that satisfies the recurrence relation
a,=a,,+ 3 for n = 2,3,4,... and suppose that a, = 2.

g .4
g F3) 3 —a  +3:2

:(an_3+3)+3'2 :an_3+3'3

n

=a, +3(n-2) =(a, +3)+3(n-2) =2+3(n-1)
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Financial Application

Example: Suppose that a person deposits $10,000.00
in a savings account at a bank yielding 11% per year
with interest compounded annually. How much will
be in the account after 30 years?

Let P, denote the amount in the account after 30
years. P satisfies the following recurrence relation:

PP 10I11IP —(11DP
with the initial condition P, = 10,000

Continued on next slide 2>
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Financial Application

P P (pifp (11D
with the initial condition P, = 10,000
Solution: Forward Substitution
P _(1lp
P, = (1.11)P,= (1.11)2P,
P, = (1.11)P,= (1.11)3P,

(LIHE =1 1P = (1.11)° 10,000
(1.11)" 10,000 (Can prove by induction, covered in Chapter 5)
=(1.11)3° 10,000 = $228,992.97

Pn
Pn
D
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Special Integer Sequences (opt)

Given a few terms of a sequence, try to identify the
sequence. Conjecture a formula, recurrence relation,
or some other rule.
Some questions to ask?

e Are there repeated terms of the same value?

e Can you obtain a term from the previous term by
adding an amount or multiplying by an amount?

e Can you obtain a term by combining the previous terms
In some way?

e Are they cycles among the terms?
e Do the terms match those of a well known sequence?



Questions on Special Integer
Sequences (opt)

Example 1: Find formulae for the sequences with the
following first five terms: 1, %2, %, 1/8,1/16

Solution: Note that the denominators are powers of 2. The
sequence with a, =1/27is a possible match. This is a
geometric progression with a=1 and r= 7.

Example 2: Consider 1,3,5,7,9

Solution: Note that each term is obtained by adding 2 to
the previous term. A possible formulais a, = 2n+ 1. This
is an arithmetic progression with a=1 and d = 2.

Example 3:1,-1,1,-1,1

Solution: The terms alternate between 1 and -1. A possible
sequence is a, = (—1)". This is a geometric progression
witha=1and r=—1.
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Useful Sequences

TABLE 1 Some Useful Sequences.
nth Term First 10 Terms

n? 1,4,9, 16, 25, 36, 49, 64, 81, 100, ...
n3 1,8,27,64, 125,216, 343, 512, 729, 1000, ...
nt 1,16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, ...
20 2.4,8,16,32,64, 128, 256,512, 1024, ...
3% 3,9,27, 81,243,729, 2187, 6561, 19683, 59049, ...
n! 1,2,6,24, 120, 720, 5040, 40320, 362880, 3628800, ...
1n 1,1,2,3,5,8, 13,21, 34,55, 89, ...
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Guessing Sequences (optional)

Example: Conjecture a simple formula for a,, if the
first 10 terms of the sequence {a, }are 1, 7, 25, 79, 241,
727,2185,6559,19681, 59047.

Solution: Note the ratio of each term to the previous
approximates 3. So now compare with the sequence
3" . We notice that the nth term is 2 less than the
corresponding power of 3. So a good conjecture is
that a, = 3" — 2.
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Integer Sequences (optional)

Integer sequences appear in a wide range of contexts.
Later we will see the sequence of prime numbers (Chapter
), the number of ways to order n discrete objects
?Chapter 6), the number of moves needed to solve the
Tower of Hanoi puzzle with n disks (Chapter 8), and the
number of rabbits on an island after n months (Chapter 8).

Integer sequences are useful in many fields such as
biology, engineering, chemistry and physics.

On-Line Encyclopedia of Integer Sequences (OESIS)
contains over 200,000 sequences. Began by Neil Stone in
the 1960s (printed form). Now found at



et

Integer Sequences (optional)

Here are three interesting sequences to try from the OESIS site. To
solve each puzzle, find a rule that determines the terms of the
sequence.

Guess the rules for forming for the following sequences:
e 2 335 10 a9 daaloady g s
« Hint: Think of adding and multiplying by numbers to generate this sequence.
e 0,0,0,0,4,95,1,1,0,55, ..

« Hint: Think of the English names for the numbers representing the position in the
sequence and the Roman Numerals for the same number.

e 2,4,6,30, 32, 34, 36,40, 42, 44, 46, ...

- Hint: Think of the English names for numbers, and whether or not they have the
letter ‘e.’

The answers and many more can be found at



py

Summations

Sum of the terms Ay Amt1,. .-, 0p
from the sequence {q,,}
The notation:

n

n
Z - Zj:m - Zmﬁjgn 4y
j=m

represents
am_|_a'm—|—1_|_"°_|_a'n

The variable ﬁis called the index of summation. It runs
through all the integers starting with its lower limit m
and ending with its upper limit n.
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Summations

More generally for a set S:

Zjesa

n

ExampleS: 7“0—|—7“1+7°2+7“3+---+r”:§ 7
0
T =
1 = =) =
+2+3+ %Z

If S ={2,5,7,10} then Zaj = ao + a5 + a7 + aig
JES



Product Notation (optional)

Product of the terms 4m @m+1,- -5 0n
from the sequence {a,}

The notation:

n
J Hj:m a’] Hméjgn J
j=m
represents

amxam_l_]_X"'XG/n



/' A vava oo A D

Geometric Series

Sums of terms of geometric progressions

1
i ar™™

Zarj = r—l_ T#l
(0 (e ¢ |

7=0
n To compute S, first multiply both sides of the
Proof: Let G = Z ar’ equality by r and then manipulate the resulting
=0 sum as follows:
n
O Z ar’
7=0
n
s Z ard Tl Continued on next slide =
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Geometric Series

z From previous slide.

n—l—l
— Z Shifting the index of summation with k= + 1.
k=1

Removing k = n + 1 term and

= - n-l—l s
- (1;) . ) i o adding k = 0 term.

=Sk (Gﬂ” i a) Substituting S for summation formula

N

o Sh S Flar )
ar®tl —q
Sn: e | 1fI‘ :)t].
== J = =
Sn Zar a=(n+1a e



Some Useful Summation Formulae

TABLE 2 Some Useful Summation Formulae.

Geometric Series: We

Sum Closed Form 4 ¥

- just proved this.

k ari’l+1 —

> ark (r #0) ar__—a ;41
k=0 r—1

g nn 4+ 1) Later we
kzl ¢ 2 will prove

n <« some of
3 2 nn+1D)@n+ 1) these by

6

k=1 2 )

" " i <—induction.
Z k3 n (I’l + ])
k=1 4

- I

> <1 o <" Proof in text
k=0 4

55 1 e (requires calculus)
> kTl <1

k=1




Cardinality of Sets

Section 2.5




Section Summary
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Cardinality

Definition: The cardinality of a set A is equal to the
cardinality of a set B, denoted

Al = |B],

if and only if there is a one-to-one correspondence (i.e., a
bijection) from A to B.

If there is a one-to-one function (i.e., an injection) from A
to B, the cardinality of A is less than or the same as the
cardinality of B and we write |A| < |B].

When |A| < |B| and A and B have different cardinality, we

say that the cardinality of A is less than the cardinality of B
and write |A| < |B|.
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Cardinality

Definition: A set that is either finite or has the same
cardinality as the set of positive integers (Z*) is called
countable. A set that is not countable is uncountable.

The set of real numbers R is an uncountable set.

When an infinite set is countable (countably infinite)
its cardinality is 8, (where X is aleph, the 15t letter of
the Hebrew alphabet). We write |S| = X, and say that
S has cardinality “aleph null.”
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Showing that a Set is Countable

An infinite set is countable if and only if it is possible
to list the elements of the set in a sequence (indexed
by the positive integers).

The reason for this is that a one-to-one

correspondence f from the set of positive integers to a
set S can be expressed in terms of a sequence

a,a,.., a,,.. where a,= f(1), a, = f(2),..., a, = f{n),...
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Hilbert’s Grand Hotel

The Grand Hotel (example due to David Hilbert) has countably infinite number of

rooms, each occupied by a guest. We can always accommodate a new guest at this
hotel. How is this possible?

David Hilbert

Explanation: Because the rooms of Grand
Hotel are countable, we can list them as
Room 1, Room 2, Room 3, and so on. When a
new guest arrives, we move the guest in Room
1 to Room 2, the guest in Room 2 to Room 3,
and in general the guest in Room n to Room n
+ 1, for all positive integers n. This frees up
Room 1, which we assign to the new guest,
and all the current guests still have rooms.

Manager New guest

The hotel can also accommodate a
countable number of new guests, all the
guests on a countable number of buses
where each bus contains a countable
number of guests (see exercises).
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Showing that a Set is Countable

Example 1: Show that the set of positive even integers E is
countable set.

Solution: Let f(x) = 2x.

S

2 4 6 8 1012

Then f'is a bijection from N to E since f'is both one-to-one
and onto. To show that it is one-to-one, suppose that

f(n) =f(m). Then 2n = 2m, and so n= m. To see that it is
onto, suppose that t is an even positive integer. Then

t = 2k for some positive integer k and f(k) = t. <
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Showing that a Set is Countable

Example 2: Show that the set of integers Z is
countable.

Solution: Can list in a sequence:
gk =0 -0 s s
Or can define a bijection from N to Z:
e When niseven: f(n)=n/2
e Whennisodd: f(n)=—(n—1)/2 <
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The Positive Rational Numbers are
Countable

Definition: A rational number can be expressed as
the ratio of two integers p and g such that g # 0.
e % is a rational number

e /2 is not a rational number.

Example 3: Show that the positive rational numbers
are countable.

Solution:The positive rational numbers are countable
since they can be arranged in a sequence:

M B

1’ 2‘, 3,...

The next slide shows how this is done. —



/Flﬁ)sitive Rational Numbers are
Countable

First row g = 1.

Second row q = 2. VR VR

etc.

Constructing the List Terms not circled (

are not listed @ % %

First list p/q with p + g = 2.  because they / /
Next list p/qg with p + g =3  repeat previously 3 4 5
listed terms @ @ 3 3 q

And so on. ( / /
2 3 4 B
/ 4 4 4 4
2 3 o B
5 5 5 5

1,%,2,3,1/3,1/4,2/3, ... <
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Strings

Example 4: Show that the set of finite strings S over a
finite alphabet A is countably infinite.

Assume an alphabetical ordering of symbols in A

Solution: Show that the strings can be listed in a
sequence. First list

1. All the strings of length 0 in alphabetical order.

2. Then all the strings of length 1 in lexicographic (as in a
dictionary) order.

3. Then all the strings of length 2 in lexicographic order.
4. And so on.

This implies a bijection from N to S and hence it is a
countably infinite set. 9
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The set of all Java programs is
countable.

Example 5: Show that the set of all Java programs is countable.

Solution: Let S be the set of strings constructed from the
characters which can appear in a Java program. Use the
ordering from the previous example. Take each string in turn:
e Feed the string into a Java compiler. (A Java compiler will
determine if the input program is a syntactically correct Java
program.)
e [fthe compiler says YES, this is a syntactically correct Java
program, we add the program to the list.

¢ We move on to the next string.

In this way we construct an implied bijection from N to the se#
of Java programs. Hence, the set of Java programs is countable.




e Seorg-Cantor
®The Real Numbers aref==_5,
Uncountable

Example: Show that the set of real numbers is uncountable.

Solution: The method is called the Cantor diagnalization argument, and is a proof by
contradiction.

Suppose R is countable. Then the real numbers between 0 and 1 are also countable
(any subset of a countable set is countable - an exercise in the text).
The real numbers between 0 and 1 can be listed in orderr , r, r,... .

12 "2

Let the decimal representation of this listing be 71 = 0.d11d12d13d14d15d56 - - .
ro = 0.d21d22da3daadasdog . . .
r3 = 0.d31d32d33d34d35d36 . . .

Form a new real number with the decimal expansion' r = .r1ToT3Ty . ..
where r7; =3ifd;; #3 and r;, =4ifd; =3

ris not equal to any of the r,, r,, r,,... Because it differs from r; in its ith position
after the decimal point. Therefore there is a real number between 0 and 1 that is not
on the list since every real number has a unique decimal expansion. Hence, all the

real numbers between 0 and 1 cannot be listed, so the set of real numbers between 0
and 1 is uncountable.

Since a set with an uncountable subset is uncountable (an exercise), the set of real
numbers is uncountable.
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Computability (Optional)

Definition: We say that a function is computable if
there is a computer program in some programming
language that finds the values of this function. If a
function is not computable we say it is
uncomputable.

There are uncomputable functions. We have shown
that the set of Java programs is countable. Exercise 38
in the text shows that there are uncountably many
different functions from a particular countably
infinite set (i.e., the positive integers) to itself.
Therefore (Exercise 39) there must be uncomputable
functions.



