Chapter 3

Representing Real Numbers

Fractions

base: $b \quad$ any integer >1
digits: $0,1, \ldots, b-1$
number $\quad d_{n-1} d_{n-2} \ldots d_{2} d_{1} d_{0} \cdot d_{-1} d_{-2} d_{-3}$
its definition

$$
d_{n-1} \times b^{n-1}+\cdots+d_{1} \times b^{1}+d_{0} \times b^{0}+d_{-1} \times b^{-1}+d_{-2} \times b^{-2}+d_{-3} \times b^{-3}
$$

Examples:

$$
3.14=3 \times 10^{0}+1 \times 10^{-1}+4 \times 10^{-2}=3+.1+.04
$$

Conversions between Decimal and Binary

Binary to Decimal
Technique

- use the definition of a number in a positional number system with base 2
- evaluate the definition formula using decimal arithmetic

Example

$$
\begin{aligned}
10.1011= & 1 \times 2^{1}+0 \times 2^{0}+ \\
& 1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+1 \times 2^{-4} \\
= & 1 \times 2+0 \times 1+ \\
& 1 \times 0.5+0 \times 0.25+1 \times 0.125+1 \times 0.0625 \\
= & 2.6875 \quad \text { (decimal) }
\end{aligned}
$$

Decimal to Binary

Technique

- integer part: convert separately, as described before
- fraction part:
- repeatedly multiply by 2
- integer part (with is always 0 or 1) is the next digit
- binary fraction is developed left to right

Example

$$
3.14579
$$

- convert integer part:

11

- convert fraction part: keep multiplying fraction by 2
$.14579 \times 2=0.29158$
$.29158 \times 2=0.58316$
$.58316 \times 2=1.16632$
$.16632 \times 2=0.33264$ etc.
$3.14579=11.0010 \ldots \quad$ (binary)

Exercise: Convert . 1 (decimal) to binary

Floating Point Numbers

Real numbers represented on a computer are called floating-point numbers.

Scientific Notation

- the following are all equivalent representations of 1234.56

123456.0	$\times 10^{-2}$
12345.6	$\times 10^{-1}$
1234.56	$\times 10^{+0}$
123.456	$\times 10^{+1}$
12.3456	$\times 10^{+2}$
1.23456	$\times 10^{+3}$
0.123456	$\times 10^{+4}$
0.0123456	$\times 10^{+5}$

- the representations differ in that the decimal point "floats" to the left or right (with the appropriate adjustment in the exponent)
- in general, any real number x can be written as

$$
x=f \times b^{e}
$$

where is an integer >1 (the base), e is any integer, and $1 / b \leq f<1$ (normalized)

Excess notation

- another way of representing integers using natural numbers
- shift the interval of integers up the number line to the interval 0 to whatever
- work backwards from the number of digits (bits) available for the natural number representatives
- want an equal number of positive and negative integers
- 3-bit representation implies 8 numbers from 0 to $7 \rightarrow-4$ to +3

Typical floating-point format in binary (single precision)

- S is the sign of the overall number
- the exponent is stored in excess-128 notation (8-bit exponent $\Rightarrow 256$ values)
- the mantissa (or fraction) has an implied radix point at the left end (just before bit position 9)

Simplified 8-bit floating-point format
01234567 - bit positions
|l||।||
SEEEMMMM

- S is the sign of the overall number
- the exponent is stored in excess-4 notation (3-bit exponent $\Rightarrow 8$ values)
- the mantissa (or fraction) has an implied radix point at the left end (just before bit position 4)

Example

$$
\begin{aligned}
3.14579 & =11.0010 \ldots \quad \text { (binary) } \\
& =11.0010 \ldots \times 2^{+0} \\
& =.110010 \ldots \times 2^{+2}
\end{aligned}
$$

representation: 01101101 (rounded)

Exercise: find the floating point representation for . 1 (decimal)

IEEE 754 Floating point Standard

- the definitive standard for representing floating point numbers
- single precision (32-bits)
- sign (1 bit)
- exponent (8 bits)
- mantissa/fraction (23 bits)
- double precision (64-bits)
- sign (1 bit)
- exponent (11 bits)
- mantissa/fraction (52 bits)
floating point arithmetic used to be very inconsistent, not anymore.

