
Recursion and Data Structures
in Computer Graphics

Ray Tracing

1

Forward Ray Tracing

 imagine that you take a picture of a room using a
camera

 exactly what is the camera sensing?

 light reflected from the surfaces of objects into the camera
lens

2

Forward Ray Tracing

3

light source

camera or
"eye"

Forward Ray Tracing

 forward ray tracing traces the paths of light from the
light source to the camera to produce an image

 computationally infeasible because almost all of the
possible paths of light miss the camera

4

Backward Ray Tracing

 backward ray tracing traces the paths of light from the
camera out into the environment to produce an image

 computationally feasible because the process starts
with a single* ray per screen pixel

5

Why Ray Tracing: Shadows

6

shadows with ~1000 light sources

Ray Tracing for the Movie 'Cars', P. Christensen et al

Ray Tracing: Reflections

7 Ray Tracing for the Movie 'Cars', P. Christensen et al

Ray Tracing: Reflections

8 Ray Tracing for the Movie 'Cars', P. Christensen et al

Comment on Previous Images

 most of the rendering in the previous images was not
done using ray tracing

 ray tracing was only used on those parts of the image
that would produce a noticeable difference

9

Backward Ray Tracing

10 http://en.wikipedia.org/wiki/File:Ray_trace_diagram.svg

11

Pseudocode for recursive raytracing (missing base cases)

Color raytrace(ray) {

 if ray hits an object {

 color0 = object_color

 if object is shiny {

 color1 = raytrace(reflected_ray)

 }

 if object is transparent {

 color2 = raytrace(transmitted_ray)

 }

 return color0 + color1 + color2;

 }

 return background_color

}

Shadows

 we can determine if a point is in shadow by tracing
rays from the point to each light source

 called shadow rays

 if a shadow ray hits an object before it reaches the light
source then the point is in shadow

12

Shadows

13

shadowed from L2

shadowed from L3

not shadowed from L1

Reflections

 if the ray hits a shiny object then we would like to
know what reflection is seen at the hit point

 we can cast a new ray in the mirror reflection direction
to determine the reflection

14

Reflections

15

incoming ray reflection ray

Transparent Objects

 if the ray hits a transparent object then we would like
to know what can be seen through the object

 we can cast a new ray in the refraction direction to
determine what can be seen through the object

16

Transparent Objects

17

incoming ray

refraction ray

Recursion

 each reflected and refracted ray can be treated as a
new view ray emanating from a hit point

 i.e., we recursively trace the reflected and refracted rays

18

Ray Tracing as a Binary Tree

19

shadow rays

Stopping the Recursion
 what are the base cases?

 ray misses all objects

 level of recursion exceeds a fixed value

 other cases outside the scope of EECS1030

20

How Fast is Ray Tracing
 approaching real time for non-cinematic quality, e.g.,

 Brigade 2 game engine

 NVIDA OptiX

 demos here if you have a high-end NVIDIA graphics card

 cinematic quality is much slower

21

https://developer.nvidia.com/optix-interactive-examples
https://developer.nvidia.com/optix-interactive-examples
https://developer.nvidia.com/optix-interactive-examples

How Fast is Ray Tracing
 678 million triangles

 rays

 111 million diffuse

 37 million specular

 26 million shadow

 1.2 billion ray-triangle
intersections

 106 minutes on
2006 hardware

22

Bounding Volumes

 it is easy to compute the intersection of a ray with
certain shapes, e.g.,

 spheres and cubes

 it is hard or expensive to compute the intersection of a
ray with arbitrary shapes

 idea

 put complex shapes inside simple ones

23

Bounding Volumes

24

Hierarchy of Bounding Volumes

 why stop at putting complex shapes into bounding
volumes?

 why not put bounding volumes inside bounding
volumes?

25

Hierarchy of Bounding Volumes

26

Spatial Subdivision
 instead of putting objects inside volumes we can

subdivide space

27

Quadtree Decomposition

28

29

and so on ...

Using a Quadtree in Ray Tracing

30

Open Source Ray Tracers
 Art of Illusion

 POV-Ray

 YafaRay

 Manta

 several others

31

http://www.artofillusion.org/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/
http://www.yafaray.org/
http://mantawiki.sci.utah.edu/manta/Main_Page

