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Ray Tracing 
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Forward Ray Tracing 
 

 

 imagine that you take a picture of a room using a 
camera 

 exactly what is the camera sensing? 

 light reflected from the surfaces of objects into the camera 
lens 
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Forward Ray Tracing 
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light source 

camera or 
"eye" 



Forward Ray Tracing 
 

 

 

 forward ray tracing traces the paths of light from the 
light source to the camera to produce an image 

 computationally infeasible because almost all of the 
possible paths of light miss the camera 
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Backward Ray Tracing 
 

 

 

 backward ray tracing traces the paths of light from the 
camera out into the environment to produce an image 

 computationally feasible because the process starts 
with a single* ray per screen pixel 
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Why Ray Tracing: Shadows 
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shadows with ~1000 light sources 

Ray Tracing for the Movie 'Cars', P. Christensen et al 



Ray Tracing: Reflections 
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Ray Tracing: Reflections 
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Comment on Previous Images 
 

 

 

 most of the rendering in the previous images was not 
done using ray tracing 

 ray tracing was only used on those parts of the image 
that would produce a noticeable difference 
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Backward Ray Tracing 

10 http://en.wikipedia.org/wiki/File:Ray_trace_diagram.svg 
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Pseudocode for recursive raytracing (missing base cases) 
 

 

Color raytrace(ray) { 

  if ray hits an object { 

    color0 = object_color 

    if object is shiny { 

      color1 = raytrace(reflected_ray) 

    } 

    if object is transparent { 

      color2 = raytrace(transmitted_ray) 

    } 

    return color0 + color1 + color2; 

  } 

  return background_color 

} 



Shadows 
 

 

 we can determine if a point is in shadow by tracing 
rays from the point to each light source 

 called shadow rays 

 if a shadow ray hits an object before it reaches the light 
source then the point is in shadow 
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Shadows 
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shadowed from L2 

shadowed from L3 

not shadowed from L1 



Reflections 
 

 

 

 if the ray hits a shiny object then we would like to 
know what reflection is seen at the hit point 

 we can cast a new ray in the mirror reflection direction 
to determine the reflection 
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Reflections 
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incoming ray reflection ray 



Transparent Objects 
 

 

 

 if the ray hits a transparent object then we would like 
to know what can be seen through the object 

 we can cast a new ray in the refraction direction to 
determine what can be seen through the object 
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Transparent Objects 
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incoming ray 

refraction ray 



Recursion 
 

 

 

 each reflected and refracted ray can be treated as a 
new view ray emanating from a hit point 

 i.e., we recursively trace the reflected and refracted rays 
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Ray Tracing as a Binary Tree 
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shadow rays 



Stopping the Recursion 
 what are the base cases? 

 ray misses all objects 

 level of recursion exceeds a fixed value 

 other cases outside the scope of EECS1030 
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How Fast is Ray Tracing 
 approaching real time for non-cinematic quality, e.g., 

 Brigade 2 game engine 

 NVIDA OptiX 

 demos here if you have a high-end NVIDIA graphics card 

 

 cinematic quality is much slower 
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https://developer.nvidia.com/optix-interactive-examples
https://developer.nvidia.com/optix-interactive-examples
https://developer.nvidia.com/optix-interactive-examples


How Fast is Ray Tracing 
 678 million triangles 

 rays 

 111 million diffuse 

 37 million specular 

 26 million shadow 

 1.2 billion ray-triangle 
intersections 

 106 minutes on 
2006 hardware 
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Bounding Volumes 
 

 it is easy to compute the intersection of a ray with 
certain shapes, e.g., 

 spheres and cubes 

 it is hard or expensive to compute the intersection of a 
ray with arbitrary shapes 

 idea 

 put complex shapes inside simple ones 
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Bounding Volumes 

24 



Hierarchy of Bounding Volumes 
 

 

 

 why stop at putting complex shapes into bounding 
volumes? 

 why not put bounding volumes inside bounding 
volumes? 
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Hierarchy of Bounding Volumes 
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Spatial Subdivision 
 instead of putting objects inside volumes we can 

subdivide space 
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Quadtree Decomposition 
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and so on ... 



Using a Quadtree in Ray Tracing 
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Open Source Ray Tracers 
 Art of Illusion 

 POV-Ray 

 YafaRay 

 Manta 

 several others 
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http://www.artofillusion.org/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/
http://www.povray.org/
http://www.yafaray.org/
http://mantawiki.sci.utah.edu/manta/Main_Page

