
Binary Search Trees

1

50

27 73

8 44 83

74 93

Binary Search Trees (BST)
 the tree from the previous slide is a special kind of

binary tree called a binary search tree

 in a binary search tree:

1. all nodes in the left subtree have data elements that are
less than the data element of the root node

2. all nodes in the right subtree have data elements that are
greater than the data element of the root node

3. rules 1 and 2 apply recursively to every subtree

3

50

27 73

8 44 83

74 93

right subtree
(all elements > 50)

left subtree
(all elements < 50)

51

76

Implementing a BST
 what types of data elements can a BST hold?

 hint: we need to be able to perform comparisons such as
less than, greater than, and equal to with the data elements

5

6

public class BinarySearchTree<E extends Comparable<? super E>> {

E must implement Comparable<G> where
G is either E or an ancestor of E

Implementing a BST: Nodes
 we need a node class that:

 has-a data element

 has-a link to the left subtree

 has-a link to the right subtree

7

8

public class BinarySearchTree<E extends Comparable<? super E>> {

 private static class Node<E> {

 private E data;

 private Node<E> left;

 private Node<E> right;

 /**

 * Create a node with the given data element. The left and right child

 * nodes are set to null.

 *

 * @param data

 * the element to store

 */

 public Node(E data) {

 this.data = data;

 this.left = null;

 this.right = null;

 }

 }

Implementing a BST: Fields and Ctor
 a BST has-a root node

 creating an empty BST should set the root node to null

9

10

 /**

 * The root node of the binary search tree.

 */

 private Node<E> root;

 /**

 * Create an empty binary search tree.

 */

 public BinarySearchTree() {

 this.root = null;

 }

Implementing a BST: Adding elements
 the definition for a BST tells you everything that you

need to know to add an element

 in a binary search tree:

1. all nodes in the left subtree have data elements that are
less than the data element of the root node

2. all nodes in the right subtree have data elements that are
greater than the data element of the root node

3. rules 1 and 2 apply recursively to every subtree

11

12

 /**

 * Add an element to the tree. The element is inserted into the tree in a

 * position that preserves the definition of a binary search tree.

 *

 * @param element

 * the element to add to the tree

 */

 public void add(E element) {

 if (this.root == null) {

 this.root = new Node<E>(element);

 }

 else {

 BinarySearchTree.add(element, null, this.root); // recursive static method

 }

 }

13

/**

 * Add an element to the subtree rooted at <code>root</code>. The element is inserted into the tree in a

 * position that preserves the definition of a binary search tree.

 *

 * @param element the element to add to the subtree

 * @param parent the parent node to the subtree

 * @param root the root of the subtree

 */

private static <E extends Comparable<? super E>> void add(E element, Node<E> parent, Node<E> root) {

 if (root == null && element.compareTo(parent.data) < 0) {

 parent.left = new Node<E>(element);

 }

 else if (root == null) {

 parent.right = new Node<E>(element);

 }

 else if (element.compareTo(root.data) < 0) {

 BinarySearchTree.add(element, root, root.left);

 }

 else {

 BinarySearchTree.add(element, root, root.right);

 }

}

Predecessors and Successors in a BST
 in a BST there is something special about a node's:

 left subtree right-most child

 right subtree left-most child

14

50

27 73

8 44 83

74 93

rightmost
child

51

leftmost
child

rightmost child = inorder predecessor

leftmost child = inorder successor

76

right subtree
(all elements > 50)

left subtree
(all elements < 50)

Predecessors and Successors in a BST
 in a BST there is something special about a node's:

 left subtree right-most child = inorder predecessor

 the node containing the largest value less than the root

 right subtree left-most child = inorder successor

 the node containing the smallest value greater than the root

 it is easy to find the predecessor and successor nodes if
you can find the nodes containing the maximum and
minimum elements in a subtree

16

17

/**

 * Find the node in a subtree that has the smallest data element.

 *

 * @param subtreeRoot

 * the root of the subtree

 * @return the node in the subtree that has the smallest data element.

 */

public static <E> Node<E> minimumInSubtree(Node<E> subtreeRoot) {

 if (subtreeRoot.left() == null) {

 return subtreeRoot;

 }

 return BinarySearchTree.minimumInSubtree(subtreeRoot.left);

}

18

/**

 * Find the node in a subtree that has the largest data element.

 *

 * @param subtreeRoot

 * the root of the subtree

 * @return the node in the subtree that has the largest data element.

 */

public static <E> Node<E> maximumInSubtree(Node<E> subtreeRoot) {

 if (subtreeRoot.right() == null) {

 return subtreeRoot;

 }

 return BinarySearchTree.maximumInSubtree(subtreeRoot.right);

}

19

/**

 * Find the node in a subtree that is the predecessor to the root of the

 * subtree. If the predecessor node exists, then it is the node that has the

 * largest data element in the left subtree of <code>subtreeRoot</code>.

 *

 * @param subtreeRoot

 * the root of the subtree

 * @return the node in a subtree that is the predecessor to the root of the

 * subtree, or <code>null</code> if the root of the subtree has no

 * predecessor

 */

public static <E> Node<E> predecessorInSubtree(Node<E> subtreeRoot) {

 if (subtreeRoot.left() == null) {

 return null;

 }

 return BinarySearchTree.maximumInSubtree(subtreeRoot.left);

}

20

/**

 * Find the node in a subtree that is the successor to the root of the

 * subtree. If the successor node exists, then it is the node that has the

 * smallest data element in the right subtree of <code>subtreeRoot</code>.

 *

 * @param subtreeRoot

 * the root of the subtree

 * @return the node in a subtree that is the successor to the root of the

 * subtree, or <code>null</code> if the root of the subtree has no

 * successor

 */

public static <E> Node<E> successorInSubtree(Node<E> subtreeRoot) {

 if (subtreeRoot.right() == null) {

 return null;

 }

 return BinarySearchTree.minimumInSubtree(subtreeRoot.right);

}

Deletion from a BST
 to delete a node in a BST there are 3 cases to consider:

1. deleting a leaf node

2. deleting a node with one child

3. deleting a node with two children

21

Deleting a Leaf Node
 deleting a leaf node is easy because the leaf has no

children

 simply remove the node from the tree

 e.g., delete 93

22

50

27 73

8 44 83

74 93

51

76

delete 93

50

27 73

8 44 83

74

51

76

Deleting a Node with One Child
 deleting a node with one child is also easy because of

the structure of the BST

 remove the node by replacing it with its child

 e.g., delete 83

25

50

27 73

8 44 83

74

51

76

delete 83

50

27 73

8 44 74 51

76

Deleting a Node with Two Children
 deleting a node with two children is a little trickier

 can you see how to do it?

28

Deleting a Node with Two Children
 replace the node with its inorder predecessor OR

inorder successor

 call the node to be deleted Z

 find the inorder predecessor OR the inorder successor

 call this node Y

 copy the data element of Y into the data element of Z

 delete Y

 e.g., delete 50

29

50

27 73

8 44 74 51

76

delete 50 using inorder predecessor

50

27 73

8 44 74 51

76

Z

Y

inorder
predecessor

to Z

44

27 73

8 44 74 51

76

copy Y data to Z data

Y

inorder
predecessor

to Z

Z

44

27 73

8 44 74 51

76

Z

delete Y

Y

44

27 73

8 74

76

51

50

27 73

8 44 74 51

76

delete 50 using inorder successor

50

27 73

8 44 74 51

76

Z

Y

inorder
successor

to Z

51

27 73

8 44 74 51

76

Z

Y

inorder
successor

to Z

copy Y data to Z data

51

27 73

8 44 74 51

76

Z

Y

delete Y

51

27 73

8 44 74

76

