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Graphs 
 a graph is a data structure made up of nodes 

 each node stores data 

 each node has links to zero or more nodes 

 in graph theory the links are normally called edges  

 graphs occur frequently in a wide variety of real-world 
problems 

 social network analysis 

 e.g., six-degrees-of-Kevin-Bacon, Facebook Friend Wheel   

 transportation networks 

 e.g., http://ac.fltmaps.com/en 

 many other examples 

 http://www.visualcomplexity.com/vc/ 
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Trees 
 trees are special cases of graphs 

 a tree is a data structure made up of nodes 

 each node stores data 

 each node has links to zero or more nodes in the next level 
of the tree 

 children of the node 

 each node has exactly one parent node 

 except for the root node 
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Trees 
 the root of the tree is the node that has no parent node 

 all algorithms start at the root 
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Trees 
 a node without any children is called a leaf 
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Trees 
 the recursive structure of a tree means that every node 

is the root of a tree 
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Binary Tree 
 a binary tree is a tree where each node has at most two 

children 

 very common in computer science 

 many variations 

 traditionally, the children nodes are called the left 
node and the right node 
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Binary Tree Algorithms 
 the recursive structure of trees leads naturally to 

recursive algorithms that operate on trees 

 for example, suppose that you want to search a binary 
tree for a particular element 
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public static <E> boolean contains(E element, Node<E> node) { 

  if (node == null) { 

    return false; 

  } 

  if (element.equals(node.data)) { 

    return true; 

  } 

  boolean inLeftTree = contains(element, node.left); 

  if (inLeftTree) { 

    return true; 

  } 

  boolean inRightTree = contains(element, node.right); 

  return inRightTree; 

} 
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Iteration 
 visiting every element of the tree can also be done 

recursively 

 3 possibilities based on when the root is visited 

 inorder 

 visit left child, then root, then right child 

 preorder 

 visit root, then left child, then right child 

 postorder 

 visit left child, then right child, then root 
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postorder: 8, 44, 27, 74, 93, 83, 73, 50 


