
Trees

1

Graphs
 a graph is a data structure made up of nodes

 each node stores data

 each node has links to zero or more nodes

 in graph theory the links are normally called edges

 graphs occur frequently in a wide variety of real-world
problems

 social network analysis

 e.g., six-degrees-of-Kevin-Bacon, Facebook Friend Wheel

 transportation networks

 e.g., http://ac.fltmaps.com/en

 many other examples

 http://www.visualcomplexity.com/vc/

2

http://friend-wheel.com/flashwheel.php
http://ac.fltmaps.com/en
http://ac.fltmaps.com/en
http://www.visualcomplexity.com/vc/
http://www.visualcomplexity.com/vc/

Trees
 trees are special cases of graphs

 a tree is a data structure made up of nodes

 each node stores data

 each node has links to zero or more nodes in the next level
of the tree

 children of the node

 each node has exactly one parent node

 except for the root node

3

4

50

11 6

79

34

88 67 23 33 99

1 31

83 6

5

50

11 6

79

34

88 67 23 33 99

1 31

83 6

Trees
 the root of the tree is the node that has no parent node

 all algorithms start at the root

6

7

50

11 6

79

34

88 67 23 33 99

1 31

83 6

root

Trees
 a node without any children is called a leaf

8

9

50

11 6

79

34

88 67 23 33 99

1 31

83 6

leaf leaf leaf leaf leaf

leaf leaf

leaf

Trees
 the recursive structure of a tree means that every node

is the root of a tree

10

11

50

11 6

79

34

88 67 23 33 99

1 31

83 6

subtree

12

50

11 6

79

34

88 67 23 33 99

1 31

83 6

subtree

13

50

11 6

79

34

88 67 23 33 99

1 31

83 6

subtree

14

50

11 6

79

34

88 67 23 33 99

1 31

83 6

subtree

15

50

11 6

79

34

88 67 23 33 99

1 31

83 6

subtree

Binary Tree
 a binary tree is a tree where each node has at most two

children

 very common in computer science

 many variations

 traditionally, the children nodes are called the left
node and the right node

16

50

27 73

8 44 83

73 93

left right

50

27 73

8 44 83

73 93

left right

50

27 73

8 44 83

73 93

right

50

27 73

8 44 83

74 93

left right

Binary Tree Algorithms
 the recursive structure of trees leads naturally to

recursive algorithms that operate on trees

 for example, suppose that you want to search a binary
tree for a particular element

21

22

public static <E> boolean contains(E element, Node<E> node) {

 if (node == null) {

 return false;

 }

 if (element.equals(node.data)) {

 return true;

 }

 boolean inLeftTree = contains(element, node.left);

 if (inLeftTree) {

 return true;

 }

 boolean inRightTree = contains(element, node.right);

 return inRightTree;

}

examine root

examine left
subtree

examine right
subtree

50

27 73

8 44 83

74 93

t.contains(93)

50

27 73

8 44 83

74 93

50 == 93?

50

27 73

8 44 83

74 93

27 == 93?

50

27 73

8 44 83

74 93
8 == 93?

50

27 73

8 44 83

74 93
44 == 93?

50

27 73

8 44 83

74 93

73 == 93?

50

27 73

8 44 83

74 93

83 == 93?

50

27 73

8 44 83

74 93

74 == 93?

50

27 73

8 44 83

74 93

93 == 93?

Iteration
 visiting every element of the tree can also be done

recursively

 3 possibilities based on when the root is visited

 inorder

 visit left child, then root, then right child

 preorder

 visit root, then left child, then right child

 postorder

 visit left child, then right child, then root

32

50

27 73

8 44 83

74 93

inorder: 8, 27, 44, 50, 73, 74, 83, 93

50

27 73

8 44 83

74 93

preorder: 50, 27, 8, 44, 73, 83, 74, 93

50

27 73

8 44 83

74 93

postorder: 8, 44, 27, 74, 93, 83, 73, 50

