
Trees 

1 



Graphs 
 a graph is a data structure made up of nodes 

 each node stores data 

 each node has links to zero or more nodes 

 in graph theory the links are normally called edges  

 graphs occur frequently in a wide variety of real-world 
problems 

 social network analysis 

 e.g., six-degrees-of-Kevin-Bacon, Facebook Friend Wheel   

 transportation networks 

 e.g., http://ac.fltmaps.com/en 

 many other examples 

 http://www.visualcomplexity.com/vc/ 

 

 
2 

http://friend-wheel.com/flashwheel.php
http://ac.fltmaps.com/en
http://ac.fltmaps.com/en
http://www.visualcomplexity.com/vc/
http://www.visualcomplexity.com/vc/


Trees 
 trees are special cases of graphs 

 a tree is a data structure made up of nodes 

 each node stores data 

 each node has links to zero or more nodes in the next level 
of the tree 

 children of the node 

 each node has exactly one parent node 

 except for the root node 

3 



4 

50 

11 6 

79 

34 

88 67 23 33 99 

1 31 

83 6 



5 

50 

11 6 

79 

34 

88 67 23 33 99 

1 31 

83 6 



Trees 
 the root of the tree is the node that has no parent node 

 all algorithms start at the root 

6 



7 

50 

11 6 

79 

34 

88 67 23 33 99 

1 31 

83 6 

root 



Trees 
 a node without any children is called a leaf 

8 



9 

50 

11 6 

79 

34 

88 67 23 33 99 

1 31 

83 6 

leaf leaf leaf leaf leaf 

leaf leaf 

leaf 



Trees 
 the recursive structure of a tree means that every node 

is the root of a tree 

10 



11 

50 

11 6 

79 

34 

88 67 23 33 99 

1 31 

83 6 

subtree 



12 

50 

11 6 

79 

34 

88 67 23 33 99 

1 31 

83 6 

subtree 



13 

50 

11 6 

79 

34 

88 67 23 33 99 

1 31 

83 6 

subtree 



14 

50 

11 6 

79 

34 

88 67 23 33 99 

1 31 

83 6 

subtree 



15 

50 

11 6 

79 

34 

88 67 23 33 99 

1 31 

83 6 

subtree 



Binary Tree 
 a binary tree is a tree where each node has at most two 

children 

 very common in computer science 

 many variations 

 traditionally, the children nodes are called the left 
node and the right node 

 

16 



50 

27 73 

8 44 83 

73 93 

left right 



50 

27 73 

8 44 83 

73 93 

left right 



50 

27 73 

8 44 83 

73 93 

right 



50 

27 73 

8 44 83 

74 93 

left right 



Binary Tree Algorithms 
 the recursive structure of trees leads naturally to 

recursive algorithms that operate on trees 

 for example, suppose that you want to search a binary 
tree for a particular element 

 

21 



22 

 

 

public static <E> boolean contains(E element, Node<E> node) { 

  if (node == null) { 

    return false; 

  } 

  if (element.equals(node.data)) { 

    return true; 

  } 

  boolean inLeftTree = contains(element, node.left); 

  if (inLeftTree) { 

    return true; 

  } 

  boolean inRightTree = contains(element, node.right); 

  return inRightTree; 

} 

 

examine root 

examine left 
subtree 

examine right 
subtree 



50 

27 73 

8 44 83 

74 93 

t.contains(93) 



50 

27 73 

8 44 83 

74 93 

50 == 93? 



50 

27 73 

8 44 83 

74 93 

27 == 93? 



50 

27 73 

8 44 83 

74 93 
8 == 93? 



50 

27 73 

8 44 83 

74 93 
44 == 93? 



50 

27 73 

8 44 83 

74 93 

73 == 93? 



50 

27 73 

8 44 83 

74 93 

83 == 93? 



50 

27 73 

8 44 83 

74 93 

74 == 93? 



50 

27 73 

8 44 83 

74 93 

93 == 93? 



Iteration 
 visiting every element of the tree can also be done 

recursively 

 3 possibilities based on when the root is visited 

 inorder 

 visit left child, then root, then right child 

 preorder 

 visit root, then left child, then right child 

 postorder 

 visit left child, then right child, then root 

32 



50 

27 73 

8 44 83 

74 93 

inorder: 8, 27, 44, 50, 73, 74, 83, 93 



50 

27 73 

8 44 83 

74 93 

preorder: 50, 27, 8, 44, 73, 83, 74, 93 



50 

27 73 

8 44 83 

74 93 

postorder: 8, 44, 27, 74, 93, 83, 73, 50 


