
Recursion

notes Chapter 8

1

Recursively Move Smallest to Front
 recall that we developed a method that moves the

smallest element in a list to the front of the list

2

Recursively Move Smallest to Front

3

Recursively Move Smallest to Front
public class Sort {

 public static void minToFront(List<Integer> t) {

 if (t.size() < 2) {

 return;

 }

 Sort.minToFront(t.subList(1, t.size()));

 int first = t.get(0);

 int second = t.get(1);

 if (second < first) {

 t.set(0, second);

 t.set(1, first);

 }

 }

}

4

Sorting the List
 observe what happens if you repeat the process with

the sublist made up of the second through last
elements:

5

0 8 7 6 4 3 5 1 2 9

minToFront

0 1 8 7 6 4 3 5 2 9

Sorting the List
 observe what happens if you repeat the process with

the sublist made up of the third through last elements:

6

minToFront

0 1 8 7 6 4 3 5 2 9

0 1 2 8 7 6 4 3 5 9

Sorting the List
 observe what happens if you repeat the process with

the sublist made up of the fourth through last
elements:

7

minToFront

0 1 2 3 8 7 6 4 5 9

0 1 2 8 7 6 4 3 5 9

Sorting the List
 if you keep calling minToFront until you reach a sublist

of size two, you will sort the original list:

 this is the selection sort algorithm
8

minToFront

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Selection Sort
public class Sort {

 // minToFront not shown

 public static void selectionSort(List<Integer> t) {

 if (t.size() > 1) {

 Sort.minToFront(t);

 Sort.selectionSort(t.subList(1, t.size()));

 }

 }

}

9

Selection Sort
 there are only two steps in the selection sort algorithm

1. move the smallest element in the list to the front

 this has complexity 𝑂(𝑛)

2. recursively selection sort the sublist of size (𝑛 − 1)

 let 𝑇(𝑛) be the number of operations needed to
selection sort a list of size 𝑛

 then the recurrence relation is:

 solving the recurrence results in

10

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂(𝑛)

𝑇 𝑛 = 𝑂(𝑛2)

Quicksort
 quicksort, like mergesort, is a divide and conquer

algorithm for sorting a list or array

 it can be described recursively as follows:

1. choose an element, called the pivot, from the list

2. reorder the list so that:

 values less than the pivot are located before the pivot

 values greater than the pivot are located after the pivot

3. quicksort the sublist of elements before the pivot

4. quicksort the sublist of elements after the pivot

11

Quicksort
 step 2 is called the partition step

 consider the following list of unique elements

 assume that the pivot is 6

12

0 8 7 6 4 3 5 1 2 9

Quicksort
 the partition step reorders the list so that:

 values less than the pivot are located before the pivot

 we need to move the cyan elements before the pivot

 values greater than the pivot are located after the pivot

 we need to move the red elements after the pivot

13

0 8 7 6 4 3 5 1 2 9

0 8 7 6 4 3 5 1 2 9

Quicksort
 after partitioning the list looks like:

 partioning has 3 results:

 the pivot is in its correct final sorted location

 the left sublist contains only elements less than the pivot

 the right sublist contains only elements greater than the
pivot

14

0 4 3 5 1 2 6 8 7 9

Quicksort
 after partitioning we recursively quicksort the left

sublist

 for the left sublist, let's assume that we choose 4 as the
pivot

 after partitioning the left sublist we get:

 we then recursively quicksort the left and right sublists

 and so on...

15

0 1 3 2 4 5 6 8 7 9

Quicksort
 eventually, the left sublist from the first pivoting

operation will be sorted; we then recursively quicksort
the right sublist:

 if we choose 8 as the pivot and partition we get:

 the left and right sublists have size 1 so there is nothing
left to do

16

0 1 2 3 4 5 6 8 7 9

0 1 2 3 4 5 6 7 8 9

Quicksort
 the computational complexity of quicksort depends

on:

 the computational complexity of the partition operation

 without proof I claim that this is 𝑂(𝑛) for a list of size 𝑛

 how the pivot is chosen

17

Quicksort
 let's assume that when we choose a pivot we always

choose the smallest (or largest) value in the sublist

 yields a sublist of size (𝑛 − 1) which we recursively quicksort

 let 𝑇(𝑛) be the number of operations needed to
quicksort a list of size 𝑛 when choosing a pivot as
described above

 then the recurrence relation is:

 solving the recurrence results in

18

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂(𝑛)

𝑇 𝑛 = 𝑂(𝑛2)

same as selection sort

Quicksort
 let's assume that when we choose a pivot we always

choose the median value in the sublist

 yields 2 sublists of size 𝑛

2
 which we recursively quicksort

 let 𝑇(𝑛) be the number of operations needed to
quicksort a list of size 𝑛 when choosing a pivot as
described above

 then the recurrence relation is:

 solving the recurrence results in

19

𝑇 𝑛 = 2𝑇 𝑛
2
+ 𝑂(𝑛)

𝑇 𝑛 = 𝑂(𝑛 log2 𝑛)

same as merge sort

Binary Search
 one reason that we care about sorting is that it is much

faster to search a sorted list compared to sorting an
unsorted list

 the classic algorithm for searching a sorted list is called
binary search

 to search a list of size 𝑛 for a value 𝑣:

 look at the element 𝑒 at index 𝑛

2

 if 𝑒 > 𝑣 recursively search the sublist to the left

 if 𝑒 < 𝑣 recursively search the sublist to the right

 if 𝑒 == 𝑣 then done

20

Binary Search

21

 consider the sorted list of size 𝑛 = 9

1 3 4 5 6 7 8 9 10

sublist

index
0 1 2 3 4 5 6 7 8

Binary Search

22

 search for 𝑣 = 3

1 3 4 5 6 7 8 9 10

index 0 1 2 3 4 5 6 7 8

𝑚𝑖𝑑 =
9

2
= 4

𝑒 = 6

𝑣 < 𝑒, recursively search the left sublist

Binary Search

23

 search for 𝑣 = 3

1 3 4 5 6 7 8 9 10

sublist

index
0 1 2 3

𝑚𝑖𝑑 =
4

2
= 2

𝑒 = 4

𝑣 < 𝑒, recursively search the left sublist

no longer considered

Binary Search

24

 search for 𝑣 = 3

1 3 4 5 6 7 8 9 10

sublist

index
0 1

𝑚𝑖𝑑 =
2

2
= 1

𝑒 = 3

𝑣 == 𝑒, done

no longer considered

Binary Search

25

 search for 𝑣 = 2

1 3 4 5 6 7 8 9 10

sublist

index
0 1 2 3 4 5 6 7 8

𝑚𝑖𝑑 =
9

2
= 4

𝑒 = 6

𝑣 < 𝑒, recursively search the left sublist

Binary Search

26

 search for 𝑣 = 2

1 3 4 5 6 7 8 9 10

sublist

index
0 1 2 3

𝑚𝑖𝑑 =
4

2
= 2

𝑒 = 4

𝑣 < 𝑒, recursively search the left sublist

no longer considered

Binary Search

27

 search for 𝑣 = 2

1 3 4 5 6 7 8 9 10

sublist

index
0 1

𝑚𝑖𝑑 =
2

2
= 1

𝑒 = 3

𝑣 < 𝑒, recursively search the left sublist

no longer considered

Binary Search

28

 search for 𝑣 = 2

1 3 4 5 6 7 8 9 10

sublist

index
0

𝑚𝑖𝑑 =
1

2
= 0

𝑒 = 1

𝑣 > 𝑒, recursively search the right sublist; right sublist is empty, done

no longer considered

Binary Search

29

 search for 𝑣 =9

1 3 4 5 6 7 8 9 10

sublist

index
0 1 2 3 4 5 6 7 8

𝑚𝑖𝑑 =
9

2
= 4

𝑒 = 6

𝑣 > 𝑒, recursively search the right sublist

Binary Search

30

 search for 𝑣 =9

1 3 4 5 6 7 8 9 10

sublist

index
0 1 2 3

𝑚𝑖𝑑 =
4

2
= 2

𝑒 = 9

𝑣 == 𝑒, done

31

/**

 * Searches a sorted list of integers for a given value using binary search.

 *

 * @param v the value to search for

 * @param t the list to search

 * @return true if v is in t, false otherwise

 */

public static boolean contains(int v, List<Integer> t) {

 if (t.isEmpty()) {

 return false;

 }

 int mid = t.size() / 2;

 int e = t.get(mid);

 if (e == v) {

 return true;

 }

 else if (v < e) {

 return Sort.contains(v, t.subList(0, mid));

 }

 else {

 return Sort.contains(v, t.subList(mid + 1, t.size()));

 }

}

Binary Search
 what is the recurrence relation?

 what is the big-O complexity?

32

