Recursion

notes Chapter 8

Recursively Move Smallest to Front

- recall that we developed a method that moves the smallest element in a list to the front of the list

Recursively Move Smallest to Front

| 8 | 7 | 6 | 4 | 3 | 5 | 0 | 2 | 9 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad original list

8	7	6	4	3	5	0	2	9	1

move the smallest element of this sublist to the front of the sublist

compare
compare these two elements and move the smallest one to the front (swapping positions)

| 0 | 8 | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

updated list

Recursively Move Smallest to Front

```
public class Sort {
    public static void minToFront(List<Integer> t) {
        if (t.size() < 2) {
            return;
        }
        Sort.minToFront(t.subList(1, t.size()));
        int first = t.get(0);
        int second = t.get(1);
        if (second < first) {
            t.set(0, second);
            t.set(1, first);
        }
    }
}
```


Sorting the List

- observe what happens if you repeat the process with the sublist made up of the second through last elements:

Sorting the List

- observe what happens if you repeat the process with the sublist made up of the third through last elements:

minToFront

Sorting the List

- observe what happens if you repeat the process with the sublist made up of the fourth through last elements:

minToFront

Sorting the List

- if you keep calling minToFront until you reach a sublist of size two, you will sort the original list:

minToFront

- this is the selection sort algorithm

Selection Sort

public class Sort \{

// minToFront not shown

public static void selectionSort(List<Integer> t) \{ if (t.size() > 1) \{

Sort.minToFront(t);
Sort.selectionSort(t.subList(1, t.size()));
\}
\}
\}

Selection Sort

- there are only two steps in the selection sort algorithm

1. move the smallest element in the list to the front

- this has complexity $O(n)$

2. recursively selection sort the sublist of size $(n-1)$

- let $T(n)$ be the number of operations needed to selection sort a list of size n
- then the recurrence relation is:

$$
T(n)=T(n-1)+O(n)
$$

- solving the recurrence results in

$$
T(n)=O\left(n^{2}\right)
$$

Quicksort

- quicksort, like mergesort, is a divide and conquer algorithm for sorting a list or array
- it can be described recursively as follows:

1. choose an element, called the pivot, from the list
2. reorder the list so that:

- values less than the pivot are located before the pivot values greater than the pivot are located after the pivot quicksort the sublist of elements before the pivot quicksort the sublist of elements after the pivot

Quicksort

- step 2 is called the partition step
- consider the following list of unique elements

- assume that the pivot is 6

Quicksort

- the partition step reorders the list so that:
- values less than the pivot are located before the pivot
- we need to move the cyan elements before the pivot

0	8	7	6	4	3	5	1	2	9

- values greater than the pivot are located after the pivot
- we need to move the red elements after the pivot

Quicksort

- after partitioning the list looks like:

- partioning has 3 results:
- the pivot is in its correct final sorted location
- the left sublist contains only elements less than the pivot
- the right sublist contains only elements greater than the pivot

Quicksort

- after partitioning we recursively quicksort the left sublist
- for the left sublist, let's assume that we choose 4 as the pivot
- after partitioning the left sublist we get:

- we then recursively quicksort the left and right sublists \square and so on...

Quicksort

- eventually, the left sublist from the first pivoting operation will be sorted; we then recursively quicksort the right sublist:

0	1	2	3	4	5	6	8	7	9

- if we choose 8 as the pivot and partition we get:

0	1	2	3	4	5	6	7	8	9

- the left and right sublists have size 1 so there is nothing left to do

Quicksort

- the computational complexity of quicksort depends on:
- the computational complexity of the partition operation
- without proof I claim that this is $O(n)$ for a list of size n
- how the pivot is chosen

Quicksort

- let's assume that when we choose a pivot we always choose the smallest (or largest) value in the sublist
- yields a sublist of size $(n-1)$ which we recursively quicksort
- let $T(n)$ be the number of operations needed to quicksort a list of size n when choosing a pivot as described above
- then the recurrence relation is:

$$
T(n)=T(n-1)+O(n) \quad \text { same as selection sort }
$$

- solving the recurrence results in

$$
T(n)=O\left(n^{2}\right)
$$

Quicksort

- let's assume that when we choose a pivot we always choose the median value in the sublist
- yields 2 sublists of size $\left(\frac{n}{2}\right)$ which we recursively quicksort
- let $T(n)$ be the number of operations needed to quicksort a list of size n when choosing a pivot as described above
- then the recurrence relation is:

$$
T(n)=2 T\left(\frac{n}{2}\right)+O(n) \quad \text { same as merge sort }
$$

- solving the recurrence results in

$$
T(n)=O\left(n \log _{2} n\right)
$$

Binary Search

- one reason that we care about sorting is that it is much faster to search a sorted list compared to sorting an unsorted list
- the classic algorithm for searching a sorted list is called binary search
- to search a list of size n for a value v :
- look at the element e at index $\left(\frac{n}{2}\right)$
- if $e>v$ recursively search the sublist to the left
- if $e<v$ recursively search the sublist to the right
- if $e==v$ then done

Binary Search

- consider the sorted list of size $n=9$

1	3	4	5	6	7	8	9	10	
sublist index	0	1	2	3	4	5	6	7	8

Binary Search

- search for $v=3$

Binary Search

- search for $v=3$
no longer considered

sublist index

0
1
2
3

$$
\begin{aligned}
\text { mid } & =\frac{4}{2}=2 \\
e & =4 \\
& v<e, \text { recursively search the left sublist }
\end{aligned}
$$

Binary Search

- search for $v=3$

> no longer considered

sublist
index
$0 \quad 1$

$$
\begin{aligned}
\operatorname{mid} & =\frac{2}{2}=1 \\
e & =3 \\
v & =e, \text { done }
\end{aligned}
$$

Binary Search

- search for $v=2$

Binary Search

- search for $v=2$
no longer considered

sublist index

0
1
2
3

$$
\begin{aligned}
\text { mid } & =\frac{4}{2}=2 \\
e & =4 \\
& v<e, \text { recursively search the left sublist }
\end{aligned}
$$

Binary Search

- search for $v=2$

> no longer considered

sublist
index
$0 \quad 1$

$$
\begin{aligned}
\text { mid } & =\frac{2}{2}=1 \\
e & =3 \\
v & <e, \text { recursively search the left sublist }
\end{aligned}
$$

Binary Search

- search for $v=2$

sublist
index

$$
\begin{aligned}
\operatorname{mid} & =\frac{1}{2}=0 \\
e & =1 \\
v & >e, \text { recursively search the right sublist; right sublist is empty, done }
\end{aligned}
$$

Binary Search

- search for $v=9$

Binary Search

- search for $v=9$

1	3	4	5	6	7	8	9	10
0								1

$$
\begin{aligned}
\text { mid } & =\frac{4}{2}=2 \\
e & =9 \\
v & ==e, \text { done }
\end{aligned}
$$

```
/**
* Searches a sorted list of integers for a given value using binary search.
*
* @param v the value to search for
* @param t the list to search
* @return true if v is in t, false otherwise
*/
public static boolean contains(int v, List<Integer> t) {
    if (t.isEmpty()) {
    return false;
}
int mid = t.size() / 2;
int e = t.get(mid);
if (e== v) {
    return true;
}
else if (v < e) {
        return Sort.contains(v, t.subList(0, mid));
}
else {
    return Sort.contains(v, t.subList(mid + 1, t.size()));
}
}
```


Binary Search

- what is the recurrence relation?
- what is the big-O complexity?

