
Recursion 

notes Chapter 8 
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Recursively Move Smallest to Front 
 recall that we developed a method that moves the 

smallest element in a list to the front of the list 
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Recursively Move Smallest to Front 
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Recursively Move Smallest to Front 
public class Sort { 

 

  public static void minToFront(List<Integer> t) { 

    if (t.size() < 2) { 

      return; 

    } 

    Sort.minToFront(t.subList(1, t.size())); 

    int first = t.get(0); 

    int second = t.get(1); 

    if (second < first) { 

      t.set(0, second); 

      t.set(1, first); 

    } 

  } 

} 
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Sorting the List 
 observe what happens if you repeat the process with 

the sublist made up of the second through last 
elements: 
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0 8 7 6 4 3 5 1 2 9 

minToFront 

0 1 8 7 6 4 3 5 2 9 



Sorting the List 
 observe what happens if you repeat the process with 

the sublist made up of the third through last elements: 
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minToFront 

0 1 8 7 6 4 3 5 2 9 

0 1 2 8 7 6 4 3 5 9 



Sorting the List 
 observe what happens if you repeat the process with 

the sublist made up of the fourth through last 
elements: 
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minToFront 

0 1 2 3 8 7 6 4 5 9 

0 1 2 8 7 6 4 3 5 9 



Sorting the List 
 if you keep calling minToFront until you reach a sublist 

of size two, you will sort the original list: 

 

 

 

 

 

 

 

 

 this is the selection sort algorithm 
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minToFront 

0 1 2 3 4 5 6 7 8 9 

0 1 2 3 4 5 6 7 8 9 



Selection Sort 
public class Sort { 

 

  // minToFront not shown 

 

  public static void selectionSort(List<Integer> t) { 

    if (t.size() > 1) {  

      Sort.minToFront(t); 

      Sort.selectionSort(t.subList(1, t.size())); 

    } 

  } 

 

   

} 
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Selection Sort 
 there are only two steps in the selection sort algorithm 

1. move the smallest element in the list to the front 

 this has complexity 𝑂(𝑛) 

2. recursively selection sort the sublist of size (𝑛 − 1) 

 let 𝑇(𝑛) be the number of operations needed to 
selection sort a list of size 𝑛 

 then the recurrence relation is: 

 

 

 solving the recurrence results in 
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𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂(𝑛) 

𝑇 𝑛 = 𝑂(𝑛2) 



Quicksort 
 quicksort, like mergesort, is a divide and conquer 

algorithm for sorting a list or array 

 it can be described recursively as follows: 

1. choose an element, called the pivot, from the list 

2. reorder the list so that: 

 values less than the pivot are located before the pivot 

 values greater than the pivot are located after the pivot 

3. quicksort the sublist of elements before the pivot 

4. quicksort the sublist of elements after the pivot 
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Quicksort 
 step 2 is called the partition step 

 consider the following list of unique elements 

 

 

 

 assume that the pivot is 6 
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0 8 7 6 4 3 5 1 2 9 



Quicksort 
 the partition step reorders the list so that: 

 values less than the pivot are located before the pivot 

 we need to move the cyan elements before the pivot 

 

 

 

 values greater than the pivot are located after the pivot 

 we need to move the red elements after the pivot 
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0 8 7 6 4 3 5 1 2 9 

0 8 7 6 4 3 5 1 2 9 



Quicksort 
 after partitioning the list looks like: 

 

 

 

 partioning has 3 results: 

 the pivot is in its correct final sorted location 

 the left sublist contains only elements less than the pivot 

 the right sublist contains only elements greater than the 
pivot 

14 

0 4 3 5 1 2 6 8 7 9 



Quicksort 
 after partitioning we recursively quicksort the left 

sublist 

 for the left sublist, let's assume that we choose 4 as the 
pivot 

 after partitioning the left sublist we get: 

 

 

 

 we then recursively quicksort the left and right sublists 

 and so on... 
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0 1 3 2 4 5 6 8 7 9 



Quicksort 
 eventually, the left sublist from the first pivoting 

operation will be sorted; we then recursively quicksort 
the right sublist: 

 

 

 if we choose 8 as the pivot and partition we get: 

 

 

 the left and right sublists have size 1 so there is nothing 
left to do 
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0 1 2 3 4 5 6 8 7 9 

0 1 2 3 4 5 6 7 8 9 



Quicksort 
 the computational complexity of quicksort depends 

on: 

 the computational complexity of the partition operation 

 without proof I claim that this is 𝑂(𝑛) for a list of size 𝑛 

 how the pivot is chosen 
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Quicksort 
 let's assume that when we choose a pivot we always 

choose the smallest (or largest) value in the sublist 

 yields a sublist of size (𝑛 − 1) which we recursively quicksort 

 let 𝑇(𝑛) be the number of operations needed to 
quicksort a list of size 𝑛 when choosing a pivot as 
described above 

 then the recurrence relation is: 

 

 

 solving the recurrence results in 
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𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂(𝑛) 

𝑇 𝑛 = 𝑂(𝑛2) 

same as selection sort 



Quicksort 
 let's assume that when we choose a pivot we always 

choose the median value in the sublist 

 yields 2 sublists of size 𝑛

2
 which we recursively quicksort 

 let 𝑇(𝑛) be the number of operations needed to 
quicksort a list of size 𝑛 when choosing a pivot as 
described above 

 then the recurrence relation is: 

 

 

 solving the recurrence results in 
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𝑇 𝑛 = 2𝑇 𝑛
2
+ 𝑂(𝑛) 

𝑇 𝑛 = 𝑂(𝑛 log2 𝑛) 

same as merge sort 



Binary Search 
 one reason that we care about sorting is that it is much 

faster to search a sorted list compared to sorting an 
unsorted list 

 the classic algorithm for searching a sorted list is called 
binary search  

 to search a list of size 𝑛 for a value 𝑣: 

 look at the element 𝑒 at index 𝑛

2
 

 if 𝑒 > 𝑣 recursively search the sublist to the left 

 if 𝑒 < 𝑣 recursively search the sublist to the right 

 if 𝑒 == 𝑣 then done 
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Binary Search 
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 consider the sorted list of size 𝑛 = 9 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 2 3 4 5 6 7 8 



Binary Search 
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 search for 𝑣 = 3 

1 3 4 5 6 7 8 9 10 

index 0 1 2 3 4 5 6 7 8 

𝑚𝑖𝑑 =
9

2
= 4 

𝑒 = 6 

𝑣 < 𝑒, recursively search the left sublist 



Binary Search 
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 search for 𝑣 = 3 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 2 3 

𝑚𝑖𝑑 =
4

2
= 2 

𝑒 = 4 

𝑣 < 𝑒, recursively search the left sublist 

no longer considered 



Binary Search 
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 search for 𝑣 = 3 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 

𝑚𝑖𝑑 =
2

2
= 1 

𝑒 = 3 

𝑣 == 𝑒, done 

no longer considered 



Binary Search 
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 search for 𝑣 = 2 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 2 3 4 5 6 7 8 

𝑚𝑖𝑑 =
9

2
= 4 

𝑒 = 6 

𝑣 < 𝑒, recursively search the left sublist 



Binary Search 
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 search for 𝑣 = 2 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 2 3 

𝑚𝑖𝑑 =
4

2
= 2 

𝑒 = 4 

𝑣 < 𝑒, recursively search the left sublist 

no longer considered 



Binary Search 
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 search for 𝑣 = 2 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 

𝑚𝑖𝑑 =
2

2
= 1 

𝑒 = 3 

𝑣 < 𝑒, recursively search the left sublist 

no longer considered 



Binary Search 
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 search for 𝑣 = 2 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 

𝑚𝑖𝑑 =
1

2
= 0 

𝑒 = 1 

𝑣 > 𝑒, recursively search the right sublist; right sublist is empty, done 

no longer considered 



Binary Search 
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 search for 𝑣 =9 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 2 3 4 5 6 7 8 

𝑚𝑖𝑑 =
9

2
= 4 

𝑒 = 6 

𝑣 > 𝑒, recursively search the right sublist 



Binary Search 
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 search for 𝑣 =9 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 2 3 

𝑚𝑖𝑑 =
4

2
= 2 

𝑒 = 9 

𝑣 == 𝑒, done 
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/** 

 * Searches a sorted list of integers for a given value using binary search. 

 *  

 * @param v the value to search for 

 * @param t the list to search 

 * @return true if v is in t, false otherwise 

 */ 

public static boolean contains(int v, List<Integer> t) { 

  if (t.isEmpty()) { 

    return false; 

  } 

  int mid = t.size() / 2; 

  int e = t.get(mid); 

  if (e == v) { 

    return true; 

  } 

  else if (v < e) { 

    return Sort.contains(v, t.subList(0, mid)); 

  } 

  else { 

    return Sort.contains(v, t.subList(mid + 1, t.size())); 

  } 

} 



Binary Search 
 what is the recurrence relation? 

 what is the big-O complexity? 
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