Recursion

notes Chapter 8

Recursively Move Smallest to Front

» recall that we developed a method that moves the
smallest element in a list to the front of the list

Recursively Move Smallest to Front

8|76 |4 |3 |5|0[2]|9 |1 original list

8| 7|6 (4 3| 5|02 [9 | 1| recursion

move the smallest eiement of this sublist
to the front of the sublist

8 | 0 | oo | v | e | e | e | e] e] e compare

compare these two elements and move the
smallest one to the front (swapping positions)

O | 8 | .o | oo | v | e | e | e | e | e updated list

Recursively Move Smallest to Front

public class Sort {

public static void minToFront(List<Integer> t) {
if (t.size() < 2) {
return;
}
Sort.minToFront(t.subList(1, t.size()));
int first = t.get(0);
int second = t.get(1);
if (second < first) {
t.set(0, second);
t.set(1, first);
}
}
}

Sorting the List

» observe what happens if you repeat the process with
the sublist made up of the second through last
elements:

0 8 7 6 4 3 5 1 2 9

|
minToFront

Sorting the List

» observe what happens if you repeat the process with
the sublist made up of the third through last elements:

|
minToFront

Sorting the List

» observe what happens if you repeat the process with
the sublist made up of the fourth through last
elements:

0 1 2 8 7 6 4 3 5 9

|
minToFront

Sorting the List

» if you keep calling minToFront until you reach a sublist
of size two, you will sort the original list:

0 1 2 3 4 5 6 7 8 9

l_'_l

minToFront

» this is the selection sort algorithm
8

Selection Sort

public class Sort {
// minToFront not shown

public static void selectionSort(List<Integer> t) {
if (t.size() > 1) {
Sort.minToFront(t);
Sort.selectionSort(t.subList(1, t.size()));

}
}

Selection Sort

» there are only two steps in the selection sort algorithm

.. move the smallest element in the list to the front
» this has complexity O(n)

>. recursively selection sort the sublist of size (n — 1)

» let T(n) be the number of operations needed to
selection sort a list of size n

» then the recurrence relation is:
Tm)=T(n—1)+0(n)
» solving the recurrence results in

T(n) = 0(n?)

10

Quicksort

» quicksort, like mergesort, is a divide and conquer
algorithm for sorting a list or array

» it can be described recursively as follows:
1. choose an element, called the pivot, from the list

>. reorder the list so that:
» values less than the pivot are located before the pivot
» values greater than the pivot are located after the pivot

3. quicksort the sublist of elements before the pivot
4. quicksort the sublist of elements after the pivot

11

Quicksort

» step 2 is called the partition step

» consider the following list of unique elements

» assume that the pivot is 6

12

0

8

v

6

4

3

5

1

2

9

Quicksort

» the partition step reorders the list so that:

» values less than the pivot are located before the pivot

» we need to move the cyan elements before the pivot

» values greater than the pivot are located after the pivot

» we need to move the red elements after the pivot

] 6

2 .

13

Quicksort

» after partitioning the list looks like:

» partioning has 3 results:

» the pivot is in its correct final sorted location
» the et sublist contains only elements less than the pivot

» the right sublist contains only elements greater than the
pivot

14

Quicksort

» after partitioning we recursively quicksort the left
sublist

» for the left sublist, let's assume that we choose 4 as the
pivot
» after partitioning the left sublist we get:

» we then recursively quicksort the e/t and right sublists

0 and so on...

15

Quicksort

» eventually, the left sublist from the first pivoting
operation will be sorted; we then recursively quicksort
the right sublist:

» if we choose 8 as the pivot and partition we get:

» the left and right sublists have size 1 so there is nothing
left to do

16

Quicksort

» the computational complexity of quicksort depends
on:

» the computational complexity of the partition operation

» without proof I claim that this is O(n) for a list of size n

» how the pivot is chosen

17

Quicksort

» let's assume that when we choose a pivot we always
choose the smallest (or largest) value in the sublist

» yields a sublist of size (n — 1) which we recursively quicksort

» let T(n) be the number of operations needed to
quicksort a list of size n when choosing a pivot as
described above

» then the recurrence relation is:
Tm)=T(n—1)+0(n) same as selection sort
» solving the recurrence results in

T(n) = 0(n?)

18

Quicksort

» let's assume that when we choose a pivot we always
choose the median value in the sublist

» yields 2 sublists of size (g) which we recursively quicksort

» let T(n) be the number of operations needed to
quicksort a list of size n when choosing a pivot as
described above

» then the recurrence relation is:

T(n) = 2T(%) + 0(n) same as merge sort

» solving the recurrence results in

T(n) = O(nlog, n)

19

Binary Search

» one reason that we care about sorting is that it is much
faster to search a sorted list compared to sorting an
unsorted list

» the classic algorithm for searching a sorted list is called
binary search

» to search a list of size n for a value v:
» look at the element e at index (g)

» if e > v recursively search the sublist to the left
» if e < v recursively search the sublist to the right
» if e == v then done

20

Binary Search

» consider the sorted list of sizen = 9

sublist
index

0 1 2 3 4 5

21

Binary Search

» search forv =3

1 3 4 5.7 8 9 | 10

index 0 1 2 3 4 5 6 7 8

9
2
e=6

mid = — =4

v < e, recursively search the left sublist

22

Binary Search

» search forv =3

no longer considered
A

s:ubllst 0 1 2 3
index
d —'4'— 2
mid = 5>~
e =4

v < e, recursively search the left sublist

Binary Search

» search forv =3

no longer considered
A

sublist
index

0 1

'd—z—l
mi =5 =
e =3

v == e, done

Binary Search

» search forv = 2

1 3 4 5.7 8 9 | 10

0 1 2 3 4 5 6 7 8

sublist
index

9
2
e=6

mid = — =4

v < e, recursively search the left sublist

25

Binary Search

» search forv = 2

no longer considered
A

s:ubllst 0 1 2 3
index
d —'4'— 2
mid = 5>~
e =4

v < e, recursively search the left sublist

Binary Search

» search forv = 2

no longer considered

| A 1
s:ubllst 0 1
index
d = 2 =1
mid = 5> =
e:

Binary Search

» search forv = 2

no longer considered
A

f 1
sublist
index 0
d = 1 =0
mid = 5=
e ==

Binary Search

» search for v =g

1 3 4 5.7 8 9 | 10

0 1 2 3 4 5 6 7 8

sublist
index

9
2
e=6

mid = — =4

v > e, recursively search the right sublist

29

Binary Search

» search for v =g

sublist
index

/**
* Searches a sorted list of integers for a given value using binary search.
*
* @param v the value to search for
* @param t the list to search
* @return true if vis in t, false otherwise
*/
public static boolean contains(int v, List<Integer> t) {
if (t.isEmpty()) {
return false;
}
int mid = t.size() / 2;
int e = t.get(mid);
if (e==v){
return true;
}
else if (v < e) {
return Sort.contains(v, t.subList(0, mid));
}
else {
return Sort.contains(v, t.subList(mid + 1, t.size()));

}
}

31

Binary Search

» what is the recurrence relation?
» what is the big-O complexity?

32

