
Recursion

notes Chapter 8

1

Recursively Move Smallest to Front
 recall that we developed a method that moves the

smallest element in a list to the front of the list

2

Recursively Move Smallest to Front

3

Recursively Move Smallest to Front
public class Sort {

 public static void minToFront(List<Integer> t) {

 if (t.size() < 2) {

 return;

 }

 Sort.minToFront(t.subList(1, t.size()));

 int first = t.get(0);

 int second = t.get(1);

 if (second < first) {

 t.set(0, second);

 t.set(1, first);

 }

 }

}

4

Sorting the List
 observe what happens if you repeat the process with

the sublist made up of the second through last
elements:

5

0 8 7 6 4 3 5 1 2 9

minToFront

0 1 8 7 6 4 3 5 2 9

Sorting the List
 observe what happens if you repeat the process with

the sublist made up of the third through last elements:

6

minToFront

0 1 8 7 6 4 3 5 2 9

0 1 2 8 7 6 4 3 5 9

Sorting the List
 observe what happens if you repeat the process with

the sublist made up of the fourth through last
elements:

7

minToFront

0 1 2 3 8 7 6 4 5 9

0 1 2 8 7 6 4 3 5 9

Sorting the List
 if you keep calling minToFront until you reach a sublist

of size two, you will sort the original list:

 this is the selection sort algorithm
8

minToFront

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Selection Sort
public class Sort {

 // minToFront not shown

 public static void selectionSort(List<Integer> t) {

 if (t.size() > 1) {

 Sort.minToFront(t);

 Sort.selectionSort(t.subList(1, t.size()));

 }

 }

}

9

Selection Sort
 there are only two steps in the selection sort algorithm

1. move the smallest element in the list to the front

 this has complexity 𝑂(𝑛)

2. recursively selection sort the sublist of size (𝑛 − 1)

 let 𝑇(𝑛) be the number of operations needed to
selection sort a list of size 𝑛

 then the recurrence relation is:

 solving the recurrence results in

10

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂(𝑛)

𝑇 𝑛 = 𝑂(𝑛2)

Quicksort
 quicksort, like mergesort, is a divide and conquer

algorithm for sorting a list or array

 it can be described recursively as follows:

1. choose an element, called the pivot, from the list

2. reorder the list so that:

 values less than the pivot are located before the pivot

 values greater than the pivot are located after the pivot

3. quicksort the sublist of elements before the pivot

4. quicksort the sublist of elements after the pivot

11

Quicksort
 step 2 is called the partition step

 consider the following list of unique elements

 assume that the pivot is 6

12

0 8 7 6 4 3 5 1 2 9

Quicksort
 the partition step reorders the list so that:

 values less than the pivot are located before the pivot

 we need to move the cyan elements before the pivot

 values greater than the pivot are located after the pivot

 we need to move the red elements after the pivot

13

0 8 7 6 4 3 5 1 2 9

0 8 7 6 4 3 5 1 2 9

Quicksort
 after partitioning the list looks like:

 partioning has 3 results:

 the pivot is in its correct final sorted location

 the left sublist contains only elements less than the pivot

 the right sublist contains only elements greater than the
pivot

14

0 4 3 5 1 2 6 8 7 9

Quicksort
 after partitioning we recursively quicksort the left

sublist

 for the left sublist, let's assume that we choose 4 as the
pivot

 after partitioning the left sublist we get:

 we then recursively quicksort the left and right sublists

 and so on...

15

0 1 3 2 4 5 6 8 7 9

Quicksort
 eventually, the left sublist from the first pivoting

operation will be sorted; we then recursively quicksort
the right sublist:

 if we choose 8 as the pivot and partition we get:

 the left and right sublists have size 1 so there is nothing
left to do

16

0 1 2 3 4 5 6 8 7 9

0 1 2 3 4 5 6 7 8 9

Quicksort
 the computational complexity of quicksort depends

on:

 the computational complexity of the partition operation

 without proof I claim that this is 𝑂(𝑛) for a list of size 𝑛

 how the pivot is chosen

17

Quicksort
 let's assume that when we choose a pivot we always

choose the smallest (or largest) value in the sublist

 yields a sublist of size (𝑛 − 1) which we recursively quicksort

 let 𝑇(𝑛) be the number of operations needed to
quicksort a list of size 𝑛 when choosing a pivot as
described above

 then the recurrence relation is:

 solving the recurrence results in

18

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂(𝑛)

𝑇 𝑛 = 𝑂(𝑛2)

same as selection sort

Quicksort
 let's assume that when we choose a pivot we always

choose the median value in the sublist

 yields 2 sublists of size 𝑛

2
 which we recursively quicksort

 let 𝑇(𝑛) be the number of operations needed to
quicksort a list of size 𝑛 when choosing a pivot as
described above

 then the recurrence relation is:

 solving the recurrence results in

19

𝑇 𝑛 = 2𝑇 𝑛
2
+ 𝑂(𝑛)

𝑇 𝑛 = 𝑂(𝑛 log2 𝑛)

same as merge sort

Binary Search
 one reason that we care about sorting is that it is much

faster to search a sorted list compared to sorting an
unsorted list

 the classic algorithm for searching a sorted list is called
binary search

 to search a list of size 𝑛 for a value 𝑣:

 look at the element 𝑒 at index 𝑛

2

 if 𝑒 > 𝑣 recursively search the sublist to the left

 if 𝑒 < 𝑣 recursively search the sublist to the right

 if 𝑒 == 𝑣 then done

20

Binary Search

21

 consider the sorted list of size 𝑛 = 9

1 3 4 5 6 7 8 9 10

sublist

index
0 1 2 3 4 5 6 7 8

Binary Search

22

 search for 𝑣 = 3

1 3 4 5 6 7 8 9 10

index 0 1 2 3 4 5 6 7 8

𝑚𝑖𝑑 =
9

2
= 4

𝑒 = 6

𝑣 < 𝑒, recursively search the left sublist

Binary Search

23

 search for 𝑣 = 3

1 3 4 5 6 7 8 9 10

sublist

index
0 1 2 3

𝑚𝑖𝑑 =
4

2
= 2

𝑒 = 4

𝑣 < 𝑒, recursively search the left sublist

no longer considered

Binary Search

24

 search for 𝑣 = 3

1 3 4 5 6 7 8 9 10

sublist

index
0 1

𝑚𝑖𝑑 =
2

2
= 1

𝑒 = 3

𝑣 == 𝑒, done

no longer considered

Binary Search

25

 search for 𝑣 = 2

1 3 4 5 6 7 8 9 10

sublist

index
0 1 2 3 4 5 6 7 8

𝑚𝑖𝑑 =
9

2
= 4

𝑒 = 6

𝑣 < 𝑒, recursively search the left sublist

Binary Search

26

 search for 𝑣 = 2

1 3 4 5 6 7 8 9 10

sublist

index
0 1 2 3

𝑚𝑖𝑑 =
4

2
= 2

𝑒 = 4

𝑣 < 𝑒, recursively search the left sublist

no longer considered

Binary Search

27

 search for 𝑣 = 2

1 3 4 5 6 7 8 9 10

sublist

index
0 1

𝑚𝑖𝑑 =
2

2
= 1

𝑒 = 3

𝑣 < 𝑒, recursively search the left sublist

no longer considered

Binary Search

28

 search for 𝑣 = 2

1 3 4 5 6 7 8 9 10

sublist

index
0

𝑚𝑖𝑑 =
1

2
= 0

𝑒 = 1

𝑣 > 𝑒, recursively search the right sublist; right sublist is empty, done

no longer considered

Binary Search

29

 search for 𝑣 =9

1 3 4 5 6 7 8 9 10

sublist

index
0 1 2 3 4 5 6 7 8

𝑚𝑖𝑑 =
9

2
= 4

𝑒 = 6

𝑣 > 𝑒, recursively search the right sublist

Binary Search

30

 search for 𝑣 =9

1 3 4 5 6 7 8 9 10

sublist

index
0 1 2 3

𝑚𝑖𝑑 =
4

2
= 2

𝑒 = 9

𝑣 == 𝑒, done

31

/**

 * Searches a sorted list of integers for a given value using binary search.

 *

 * @param v the value to search for

 * @param t the list to search

 * @return true if v is in t, false otherwise

 */

public static boolean contains(int v, List<Integer> t) {

 if (t.isEmpty()) {

 return false;

 }

 int mid = t.size() / 2;

 int e = t.get(mid);

 if (e == v) {

 return true;

 }

 else if (v < e) {

 return Sort.contains(v, t.subList(0, mid));

 }

 else {

 return Sort.contains(v, t.subList(mid + 1, t.size()));

 }

}

Binary Search
 what is the recurrence relation?

 what is the big-O complexity?

32

