
Recursion 

notes Chapter 8 
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Recursively Move Smallest to Front 
 recall that we developed a method that moves the 

smallest element in a list to the front of the list 
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Recursively Move Smallest to Front 
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Recursively Move Smallest to Front 
public class Sort { 

 

  public static void minToFront(List<Integer> t) { 

    if (t.size() < 2) { 

      return; 

    } 

    Sort.minToFront(t.subList(1, t.size())); 

    int first = t.get(0); 

    int second = t.get(1); 

    if (second < first) { 

      t.set(0, second); 

      t.set(1, first); 

    } 

  } 

} 
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Sorting the List 
 observe what happens if you repeat the process with 

the sublist made up of the second through last 
elements: 
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0 8 7 6 4 3 5 1 2 9 

minToFront 

0 1 8 7 6 4 3 5 2 9 



Sorting the List 
 observe what happens if you repeat the process with 

the sublist made up of the third through last elements: 
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minToFront 

0 1 8 7 6 4 3 5 2 9 

0 1 2 8 7 6 4 3 5 9 



Sorting the List 
 observe what happens if you repeat the process with 

the sublist made up of the fourth through last 
elements: 
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minToFront 

0 1 2 3 8 7 6 4 5 9 

0 1 2 8 7 6 4 3 5 9 



Sorting the List 
 if you keep calling minToFront until you reach a sublist 

of size two, you will sort the original list: 

 

 

 

 

 

 

 

 

 this is the selection sort algorithm 
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minToFront 

0 1 2 3 4 5 6 7 8 9 

0 1 2 3 4 5 6 7 8 9 



Selection Sort 
public class Sort { 

 

  // minToFront not shown 

 

  public static void selectionSort(List<Integer> t) { 

    if (t.size() > 1) {  

      Sort.minToFront(t); 

      Sort.selectionSort(t.subList(1, t.size())); 

    } 

  } 

 

   

} 
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Selection Sort 
 there are only two steps in the selection sort algorithm 

1. move the smallest element in the list to the front 

 this has complexity 𝑂(𝑛) 

2. recursively selection sort the sublist of size (𝑛 − 1) 

 let 𝑇(𝑛) be the number of operations needed to 
selection sort a list of size 𝑛 

 then the recurrence relation is: 

 

 

 solving the recurrence results in 
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𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂(𝑛) 

𝑇 𝑛 = 𝑂(𝑛2) 



Quicksort 
 quicksort, like mergesort, is a divide and conquer 

algorithm for sorting a list or array 

 it can be described recursively as follows: 

1. choose an element, called the pivot, from the list 

2. reorder the list so that: 

 values less than the pivot are located before the pivot 

 values greater than the pivot are located after the pivot 

3. quicksort the sublist of elements before the pivot 

4. quicksort the sublist of elements after the pivot 
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Quicksort 
 step 2 is called the partition step 

 consider the following list of unique elements 

 

 

 

 assume that the pivot is 6 
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0 8 7 6 4 3 5 1 2 9 



Quicksort 
 the partition step reorders the list so that: 

 values less than the pivot are located before the pivot 

 we need to move the cyan elements before the pivot 

 

 

 

 values greater than the pivot are located after the pivot 

 we need to move the red elements after the pivot 

13 

0 8 7 6 4 3 5 1 2 9 

0 8 7 6 4 3 5 1 2 9 



Quicksort 
 after partitioning the list looks like: 

 

 

 

 partioning has 3 results: 

 the pivot is in its correct final sorted location 

 the left sublist contains only elements less than the pivot 

 the right sublist contains only elements greater than the 
pivot 
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0 4 3 5 1 2 6 8 7 9 



Quicksort 
 after partitioning we recursively quicksort the left 

sublist 

 for the left sublist, let's assume that we choose 4 as the 
pivot 

 after partitioning the left sublist we get: 

 

 

 

 we then recursively quicksort the left and right sublists 

 and so on... 
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0 1 3 2 4 5 6 8 7 9 



Quicksort 
 eventually, the left sublist from the first pivoting 

operation will be sorted; we then recursively quicksort 
the right sublist: 

 

 

 if we choose 8 as the pivot and partition we get: 

 

 

 the left and right sublists have size 1 so there is nothing 
left to do 
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0 1 2 3 4 5 6 8 7 9 

0 1 2 3 4 5 6 7 8 9 



Quicksort 
 the computational complexity of quicksort depends 

on: 

 the computational complexity of the partition operation 

 without proof I claim that this is 𝑂(𝑛) for a list of size 𝑛 

 how the pivot is chosen 

17 



Quicksort 
 let's assume that when we choose a pivot we always 

choose the smallest (or largest) value in the sublist 

 yields a sublist of size (𝑛 − 1) which we recursively quicksort 

 let 𝑇(𝑛) be the number of operations needed to 
quicksort a list of size 𝑛 when choosing a pivot as 
described above 

 then the recurrence relation is: 

 

 

 solving the recurrence results in 
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𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂(𝑛) 

𝑇 𝑛 = 𝑂(𝑛2) 

same as selection sort 



Quicksort 
 let's assume that when we choose a pivot we always 

choose the median value in the sublist 

 yields 2 sublists of size 𝑛

2
 which we recursively quicksort 

 let 𝑇(𝑛) be the number of operations needed to 
quicksort a list of size 𝑛 when choosing a pivot as 
described above 

 then the recurrence relation is: 

 

 

 solving the recurrence results in 
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𝑇 𝑛 = 2𝑇 𝑛
2
+ 𝑂(𝑛) 

𝑇 𝑛 = 𝑂(𝑛 log2 𝑛) 

same as merge sort 



Binary Search 
 one reason that we care about sorting is that it is much 

faster to search a sorted list compared to sorting an 
unsorted list 

 the classic algorithm for searching a sorted list is called 
binary search  

 to search a list of size 𝑛 for a value 𝑣: 

 look at the element 𝑒 at index 𝑛
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 if 𝑒 > 𝑣 recursively search the sublist to the left 

 if 𝑒 < 𝑣 recursively search the sublist to the right 

 if 𝑒 == 𝑣 then done 
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Binary Search 
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 consider the sorted list of size 𝑛 = 9 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 2 3 4 5 6 7 8 



Binary Search 
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 search for 𝑣 = 3 

1 3 4 5 6 7 8 9 10 

index 0 1 2 3 4 5 6 7 8 

𝑚𝑖𝑑 =
9

2
= 4 

𝑒 = 6 

𝑣 < 𝑒, recursively search the left sublist 



Binary Search 
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 search for 𝑣 = 3 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 2 3 

𝑚𝑖𝑑 =
4

2
= 2 

𝑒 = 4 

𝑣 < 𝑒, recursively search the left sublist 

no longer considered 



Binary Search 
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 search for 𝑣 = 3 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 

𝑚𝑖𝑑 =
2

2
= 1 

𝑒 = 3 

𝑣 == 𝑒, done 

no longer considered 



Binary Search 
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 search for 𝑣 = 2 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 2 3 4 5 6 7 8 

𝑚𝑖𝑑 =
9

2
= 4 

𝑒 = 6 

𝑣 < 𝑒, recursively search the left sublist 



Binary Search 
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 search for 𝑣 = 2 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 2 3 

𝑚𝑖𝑑 =
4

2
= 2 

𝑒 = 4 

𝑣 < 𝑒, recursively search the left sublist 

no longer considered 



Binary Search 
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 search for 𝑣 = 2 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 

𝑚𝑖𝑑 =
2

2
= 1 

𝑒 = 3 

𝑣 < 𝑒, recursively search the left sublist 

no longer considered 



Binary Search 
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 search for 𝑣 = 2 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 

𝑚𝑖𝑑 =
1

2
= 0 

𝑒 = 1 

𝑣 > 𝑒, recursively search the right sublist; right sublist is empty, done 

no longer considered 



Binary Search 
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 search for 𝑣 =9 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 2 3 4 5 6 7 8 

𝑚𝑖𝑑 =
9

2
= 4 

𝑒 = 6 

𝑣 > 𝑒, recursively search the right sublist 



Binary Search 
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 search for 𝑣 =9 

1 3 4 5 6 7 8 9 10 

sublist

index 
0 1 2 3 

𝑚𝑖𝑑 =
4

2
= 2 

𝑒 = 9 

𝑣 == 𝑒, done 
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/** 

 * Searches a sorted list of integers for a given value using binary search. 

 *  

 * @param v the value to search for 

 * @param t the list to search 

 * @return true if v is in t, false otherwise 

 */ 

public static boolean contains(int v, List<Integer> t) { 

  if (t.isEmpty()) { 

    return false; 

  } 

  int mid = t.size() / 2; 

  int e = t.get(mid); 

  if (e == v) { 

    return true; 

  } 

  else if (v < e) { 

    return Sort.contains(v, t.subList(0, mid)); 

  } 

  else { 

    return Sort.contains(v, t.subList(mid + 1, t.size())); 

  } 

} 



Binary Search 
 what is the recurrence relation? 

 what is the big-O complexity? 
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