Informal Analysis of Merge Sort
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suppose the running time (the number of operations)
of merge sort is a function of the number of elements
to sort

» let the function be T(n)

merge sort works by splitting the list into two sub-lists
(each about half the size of the original list) and
sorting the sub-lists

» this takes 2T(n/2) running time

then the sub-lists are merged
» this takes O(n) running time

total running time T(n) = 2T(n/2) + O(n)



Solving the Recurrence Relation

T(n) — 2T(n/2) + O(n) T(n) approaches...
& 2T(n/2) + n
= 2[ 2T(n/4) + n/2 | + n
= 4T(n/4) + 2n
= 4] 2T(n/8) + n/4 | + 2n
= 8T(n/8) + 3n
= 8 2T(n/16) + n/8 | + 3n
= 16T(n/16) + 4n
= ZkT(n/Zk) + kn



Solving the Recurrence Relation
) =  2KT(n/2%) + kn

» for a list of length 1 we know T(1) =1

» if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

» we have T(n/ 2 ‘) on the right-hand side, so we need to find
some value of k such that

k

nj2k-1 = 2k n= k= log,(n)




Solving the Recurrence Relation

T(n) = 20827 T(n/Zlogz ”) + nlog, n
=nT(1) +nlog,n
=n+nlog,n
e nlog, n



Proof for O(nlog, n)

n <nlog,n forn > 2
~ n+nlog,n < 2nlog, n forn > 2
“ n+nlog,n < Mnlog,n forn >m

istrueforM =2and m = 2

~ n+nlog,n € O(nlog,n)



Recursion

notes Chapter 8



Is Merge Sort Efficient?

» consider a simpler (non-recursive) sorting algorithm

called insertion sort

// to sort an array a[0]..a[n-1]
for i = 0 to (n-1) {

swap a[i] and a[k]
}

not Java

k = index of smallest element in sub-array af[i]..a[n-1]

for i = 0 to (n-1) {
for j = (i+l1l) to (n-1) {
if (a[j] < a[i]) {

o find smallest
k =3,

element

}
}
tmp = a[i]; a[i] = a[k]; al[k] = tmp;
}

not Java

1 comparison +
1assignment

3 assignments
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n-1
= (Z(Z(n— 1-(+1D+1)

i=

n-—1
:(22(n—i—1)>+3n
=0

=2n°—-n?4+n-2n+3n
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Comparing Rates of Growth
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Comments

» big O complexity tells you something about the
running time of an algorithm as the size of the input,
n, approaches infinity
» we say that it describes the limiting, or asymptotic, running

time of an algorithm

» for small values of n it is often the case that a less
efficient algorithm (in terms of big O) will run faster
than a more efficient one

» insertion sort is typically faster than merge sort for short
lists of numbers
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Revisiting the Fibonacci Numbers

» the recursive implementation based on the definition
of the Fibonacci numbers is inefficient

public static int fibonacci (int n) {
if (n == 0) {
return 0O;

}
else if (n == 1) {

return 1;

}

int £ = fibonacci(n - 1) + fibonacci(n - 2);

return f;
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» how inefficient is it?

» let T(n) be the running time to compute the nth
Fibonacci number

» T0)=T(1) =1
» T(n) is a recurrence relation
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T(n)

=T(n-1)+T(n-2)
=(T(n=2)+T(n-3))+T(n-2)
=2T(N—-2)+T(n-3)
>2T(n-2)

> 2(2T (n—4))=4T (n—4)

> 4(2T (n—6))=8T (n—6)
>8(2T (n—8))=16T (n—8)

> 2T (n—2k)



Solving the Recurrence Relation
) >  2KT(n- 2Kk)

» we know T(1) =1

» if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

» we have T(n - 2k) so we need to find a value for k such that:

n-2k=1=1+2k=n=k=(n-1)/2

T(N)>2T(h-2k) = 2" Y2T()) = 2092 < O(2")
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Towers of Hanoi

» a problem easily solved using recursion

A. n| c|

» move the stack of n disks from A to C

» can move one disk at a time from the top of one stack onto
another stack

» cannot move a larger disk onto a smaller disk
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Towers of Hanoi

» legend says that the world will end when a 64 disk
version of the puzzle is solved

» several appearances in pop culture
» Doctor Who

» Rise of the Planet of the Apes
» Survior: South Pacific
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Towers of Hanoi

P n=1

» move disk from A to C
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Towers of Hanoi

A| l|

P n=1
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Towers of Hanoi

P n=2

» move disk from A to B
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Towers of Hanoi

P n=2

» move disk from A to C

20




Towers of Hanoi

P n=2

» move disk from B to C
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Towers of Hanoi

» n
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A| l|




Towers of Hanoi

» N =3

AI

» move disk from A to C
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Towers of Hanoi

» N =3

» move disk from A to B
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Towers of Hanoi

» N =3

» move disk from C to B
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Towers of Hanoi

» N =3

» move disk from A to C
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Towers of Hanoi

» N =3

» move disk from B to A
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Towers of Hanoi

» N =3

» move disk from B to C
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Towers of Hanoi

» N =3

» move disk from A to C
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Towers of Hanoi

» N =3

A| l|
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Towers of Hanoi

» N =4
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» move (n - 1) disks from A to B using C

n| c|



Towers of Hanoi

» N =4

A BI

» move disk from A to C
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Towers of Hanoi

» N =4

A BI C

» move (n - 1) disks from B to C using A
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Towers of Hanoi

» N =4
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A| l|




» basecasen=1
.. movedisk from A to C
) recursive case

. move (n - 1) disks from A to B
>.  move 1disk from A to C
3. move (n - 1) disks from B to C
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Towers of Hanoi

public static void move (int n,
String from,
String to,
String using) {
if(n == 1) {
System.out.println("move disk from " + from + " to " + to);

}

else {
move(n - 1, from, using, to);
move (1, from, to, using);

move(n - 1, using, to, from);



