Informal Analysis of Merge Sort

- suppose the running time (the number of operations) of merge sort is a function of the number of elements to sort
- let the function be $T(n)$
- merge sort works by splitting the list into two sub-lists (each about half the size of the original list) and sorting the sub-lists
- this takes $2 T(n / 2)$ running time
- then the sub-lists are merged
- this takes $O(n)$ running time
- total running time $T(n)=2 T(n / 2)+O(n)$

Solving the Recurrence Relation

$$
\begin{array}{rlr}
T(n) & \rightarrow 2 T(n / 2)+O(n) & T(n) \text { approaches... } \\
& \approx 2 T(n / 2)+n \\
& =2[2 T(n / 4)+n / 2]+n \\
& =4 T(n / 4)+2 n \\
& =4[2 T(n / 8)+n / 4]+2 n \\
& =8 T(n / 8)+3 n \\
& =8[2 T(n / 16)+n / 8]+3 n \\
& =16 T(n / 16)+4 n \\
& =2^{k} T\left(n / 2^{k}\right)+k n
\end{array}
$$

Solving the Recurrence Relation

$\left.T(n)=2^{k} T \underline{n / 2^{k}}\right)+k n$

- for a list of length 1 we know $T(1)=1$
- if we can substitute $T(1)$ into the right-hand side of $T(n)$ we might be able to solve the recurrence
- we have $T\left(n / 2^{k}\right)$ on the right-hand side, so we need to find some value of k such that

$$
n / 2^{k}=1 \Rightarrow 2^{k}=n \Rightarrow k=\log _{2}(n)
$$

Solving the Recurrence Relation

$$
\begin{aligned}
T(n) & =2^{\log _{2} n} T\left(n / 2^{\log _{2} n}\right)+n \log _{2} n \\
& =n T(1)+n \log _{2} n \\
& =n+n \log _{2} n \\
& \in n \log _{2} n
\end{aligned}
$$

Proof for $O\left(n \log _{2} n\right)$

$n<n \log _{2} n$
$\therefore n+n \log _{2} n<2 n \log _{2} n$
$\therefore \quad n+n \log _{2} n<M n \log _{2} n$ is true for $M=2$ and $m=2$
$\therefore n+n \log _{2} n \in O\left(n \log _{2} n\right)$
for $n>2$
for $n>2$
for $n>m$

Recursion

notes Chapter 8

Is Merge Sort Efficient?

- consider a simpler (non-recursive) sorting algorithm called insertion sort

```
// to sort an array a[0]..a[n-1] not Java
for i = 0 to (n-1) {
    k = index of smallest element in sub-array a[i]..a[n-1]
    swap a[i] and a[k]
}
```

```
for i = 0 to (n-1) {
not Java
    for j = (i+1) to (n-1) {
        if (a[j] < a[i]) {
            k = j;
        }
    }
    tmp = a[i]; a[i] = a[k]
}
```

7

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-1}\left(\left(\sum_{j=i+1}^{n-1} 2\right)+3\right) \\
& =\left(\sum_{i=0}^{n-1}(2(n-1-(i+1)+1))\right)+\sum_{i=0}^{n-1} 3 \\
& =\left(\sum_{i=0}^{n-1} 2(n-i-1)\right)+3 n \\
& =\left(2 \sum_{i=0}^{n-1} n\right)-\left(2 \sum_{i=0}^{n-1} i\right)-\left(2 \sum_{i=0}^{n-1} 1\right)+3 n \\
& =2 n^{2}-2 \frac{n(n-1)}{2}-2 n+3 n \\
& =2 n^{2}-n^{2}+n-2 n+3 n \\
& =n^{2}+2 n \quad \in O\left(n^{2}\right)
\end{aligned}
$$

Comparing Rates of Growth

Comments

- big O complexity tells you something about the running time of an algorithm as the size of the input, n, approaches infinity
- we say that it describes the limiting, or asymptotic, running time of an algorithm
- for small values of n it is often the case that a less efficient algorithm (in terms of big O) will run faster than a more efficient one
- insertion sort is typically faster than merge sort for short lists of numbers

Revisiting the Fibonacci Numbers

- the recursive implementation based on the definition of the Fibonacci numbers is inefficient

```
public static int fibonacci(int n) {
    if (n == 0) {
        return 0;
    }
    else if (n == 1) {
        return 1;
    }
    int f = fibonacci (n - 1) + fibonacci(n - 2);
    return f;
}
```

- how inefficient is it?
- let $T(n)$ be the running time to compute the nth Fibonacci number
- $T(0)=T(1)=1$
- $T(n)$ is a recurrence relation

$$
\begin{aligned}
T(n) & =T(n-1)+T(n-2) \\
& =(T(n-2)+T(n-3))+T(n-2) \\
& =2 T(n-2)+T(n-3) \\
& >2 T(n-2) \\
& >2(2 T(n-4))=4 T(n-4) \\
& >4(2 T(n-6))=8 T(n-6) \\
& >8(2 T(n-8))=16 T(n-8) \\
& >2^{k} T(n-2 k)
\end{aligned}
$$

Solving the Recurrence Relation

$$
T(n)>\quad 2^{k} T(\underline{n-2 k})
$$

- we know $T(1)=1$
- if we can substitute $T(1)$ into the right-hand side of $T(n)$ we might be able to solve the recurrence
- we have $T(n-2 k)$ so we need to find a value for k such that:

$$
\begin{aligned}
\underline{n-2 k}=1 & \Rightarrow 1+2 k=n \Rightarrow k=(\mathrm{n}-1) / 2 \\
T(n)>2^{k} T(n-2 k) & =2^{(n-1) / 2} T(1)=2^{(n-1) / 2} \in O\left(2^{n}\right)
\end{aligned}
$$

Towers of Hanoi

- a problem easily solved using recursion

c

- move the stack of n disks from A to C
- can move one disk at a time from the top of one stack onto another stack
- cannot move a larger disk onto a smaller disk

Towers of Hanoi

- legend says that the world will end when a 64 disk version of the puzzle is solved
- several appearances in pop culture
- Doctor Who
- Rise of the Planet of the Apes
- Survior: South Pacific

Towers of Hanoi

- $\mathrm{n}=1$

- move disk from A to C

Towers of Hanoi

- $\mathrm{n}=1$

Towers of Hanoi

- $\mathrm{n}=2$

- move disk from A to B

Towers of Hanoi

- $\mathrm{n}=2$

- move disk from A to C

Towers of Hanoi

- $\mathrm{n}=2$

- move disk from B to C

Towers of Hanoi

- $\mathrm{n}=2$

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from A to C

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from A to B

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from C to B

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from A to C

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from B to A

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from B to C

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from A to C

Towers of Hanoi

- $\mathrm{n}=3$

Towers of Hanoi

- $\mathrm{n}=4$

- move ($\mathrm{n}-1$) disks from A to B using C

Towers of Hanoi

- $\mathrm{n}=4$

- move disk from A to C

Towers of Hanoi

- $\mathrm{n}=4$

- move ($n-1$) disks from B to C using A

Towers of Hanoi

- $\mathrm{n}=4$

- base case $n=1$

1. move disk from A to C

- recursive case

1. move ($n-1$) disks from A to B
2. move 1 disk from A to C
3. move ($n-1$) disks from B to C

Towers of Hanoi

```
public static void move(int n,
    String from,
    String to,
    String using) {
    if(n == 1) {
        System.out.println("move disk from " + from + " to " + to);
    }
    else {
        move(n - 1, from, using, to);
        move(1, from, to, using);
        move(n - 1, using, to, from);
    }
}
```

