
Informal Analysis of Merge Sort
 suppose the running time (the number of operations)

of merge sort is a function of the number of elements
to sort

 let the function be T(n)

 merge sort works by splitting the list into two sub-lists
(each about half the size of the original list) and
sorting the sub-lists
 this takes 2T(n/2) running time

 then the sub-lists are merged

 this takes O(n) running time

 total running time T(n) = 2T(n/2) + O(n)

1

Solving the Recurrence Relation
T(n) 2T(n/2) + O(n) T(n) approaches...

 2T(n/2) + n

 = 2[2T(n/4) + n/2] + n

 = 4T(n/4) + 2n

 = 4[2T(n/8) + n/4] + 2n

 = 8T(n/8) + 3n

 = 8[2T(n/16) + n/8] + 3n

 = 16T(n/16) + 4n

 = 2
kT(n/2k) + kn

2

Solving the Recurrence Relation
T(n) = 2

kT(n/2k) + kn

 for a list of length 1 we know T(1) = 1

 if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

 we have T(n/2k) on the right-hand side, so we need to find
some value of k such that

n/2k = 1 2k = n k = log2(n)

3

Solving the Recurrence Relation

4

𝑇 𝑛 = 2log2 𝑛 𝑇 𝑛 2log2 𝑛 + 𝑛 log2 𝑛

= 𝑛 𝑇 1 + 𝑛 log2 𝑛
= 𝑛 + 𝑛 log2 𝑛
∈ 𝑛 log2 𝑛

Proof for 𝑂(𝑛 log2 𝑛)

5

𝑛 < 𝑛 log2 𝑛

∴ 𝑛 + 𝑛 log2 𝑛 < 2𝑛 log2 𝑛

for 𝑛 > 2

∴ 𝑛 + 𝑛 log2 𝑛 < 𝑀𝑛 log2 𝑛 for 𝑛 > 𝑚

is true for 𝑀 = 2 and 𝑚 = 2

for 𝑛 > 2

∴ 𝑛 + 𝑛 log2 𝑛 ∈ 𝑂 𝑛 log2 𝑛

Recursion

notes Chapter 8

6

Is Merge Sort Efficient?
 consider a simpler (non-recursive) sorting algorithm

called insertion sort

7

// to sort an array a[0]..a[n-1] not Java

for i = 0 to (n-1) {

 k = index of smallest element in sub-array a[i]..a[n-1]

 swap a[i] and a[k]

}

for i = 0 to (n-1) { not Java

 for j = (i+1) to (n-1) {

 if (a[j] < a[i]) {

 k = j;

 }

 }

 tmp = a[i]; a[i] = a[k]; a[k] = tmp;

}

1 comparison +
1 assignment

3 assignments

find smallest
element

8

𝑇 𝑛 = 2

𝑛−1

𝑗=𝑖+1

+ 3

𝑛−1

𝑖=0

= 2 𝑛 − 1 − 𝑖 + 1 + 1

𝑛−1

𝑖=0

+ 3

𝑛−1

𝑖=0

= 2 𝑛 − 𝑖 − 1

𝑛−1

𝑖=0

+ 3𝑛

= 2 𝑛

𝑛−1

𝑖=0

− 2 𝑖

𝑛−1

𝑖=0

− 2 1

𝑛−1

𝑖=0

+ 3𝑛

= 2𝑛2 − 2
𝑛 𝑛 − 1

2
− 2𝑛 + 3𝑛

= 2𝑛2 − 𝑛2 + 𝑛 − 2𝑛 + 3𝑛

= 𝑛2 + 2𝑛 ∈ 𝑂 𝑛2

Comparing Rates of Growth

9

O(n)

O(n logn)

O(n2) O(2n)

n

Comments
 big O complexity tells you something about the

running time of an algorithm as the size of the input,
n, approaches infinity

 we say that it describes the limiting, or asymptotic, running
time of an algorithm

 for small values of n it is often the case that a less
efficient algorithm (in terms of big O) will run faster
than a more efficient one

 insertion sort is typically faster than merge sort for short
lists of numbers

10

Revisiting the Fibonacci Numbers
 the recursive implementation based on the definition

of the Fibonacci numbers is inefficient

public static int fibonacci(int n) {

 if (n == 0) {

 return 0;

 }

 else if (n == 1) {

 return 1;

 }

 int f = fibonacci(n - 1) + fibonacci(n - 2);

 return f;

}

11

 how inefficient is it?

 let T(n) be the running time to compute the nth
Fibonacci number

 T(0) = T(1) = 1

 T(n) is a recurrence relation

12

 T(n)

13

)2()1(nTnT

)2()3()2(nTnTnT

)3()2(2 nTnT

)2(2 nT

)4(4)4(22 nTnT

)6(8)6(24 nTnT

)8(16)8(28 nTnT

)2(2 knTk

Solving the Recurrence Relation
T(n) > 2

kT(n - 2k)

 we know T(1) = 1

 if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

 we have T(n - 2k) so we need to find a value for k such that:

n - 2k = 1 1 + 2k = n k = (n – 1)/2

14

)2(2)1(2)2(2)(2121 nnnk OTknTnT

Towers of Hanoi
 a problem easily solved using recursion

 move the stack of n disks from A to C

 can move one disk at a time from the top of one stack onto
another stack

 cannot move a larger disk onto a smaller disk

15

A B C

Towers of Hanoi
 legend says that the world will end when a 64 disk

version of the puzzle is solved

 several appearances in pop culture

 Doctor Who

 Rise of the Planet of the Apes

 Survior: South Pacific

16

Towers of Hanoi
 n = 1

 move disk from A to C

17

A B C

Towers of Hanoi
 n = 1

18

A B C

Towers of Hanoi
 n = 2

 move disk from A to B

19

A B C

Towers of Hanoi
 n = 2

 move disk from A to C

20

A B C

Towers of Hanoi
 n = 2

 move disk from B to C

21

A B C

Towers of Hanoi
 n = 2

22

A B C

Towers of Hanoi
 n = 3

 move disk from A to C

23

A B C

Towers of Hanoi
 n = 3

 move disk from A to B

24

A B C

Towers of Hanoi
 n = 3

 move disk from C to B

25

A B C

Towers of Hanoi
 n = 3

 move disk from A to C

26

A B C

Towers of Hanoi
 n = 3

 move disk from B to A

27

A B C

Towers of Hanoi
 n = 3

 move disk from B to C

28

A B C

Towers of Hanoi
 n = 3

 move disk from A to C

29

A B C

Towers of Hanoi
 n = 3

30

A B C

Towers of Hanoi
 n = 4

 move (n – 1) disks from A to B using C

31

A B C

Towers of Hanoi
 n = 4

 move disk from A to C

32

A B C

Towers of Hanoi
 n = 4

 move (n – 1) disks from B to C using A

33

A B C

Towers of Hanoi
 n = 4

34

A B C

 base case n = 1

1. move disk from A to C

 recursive case

1. move (n – 1) disks from A to B

2. move 1 disk from A to C

3. move (n – 1) disks from B to C

35

Towers of Hanoi

public static void move(int n,

 String from,

 String to,

 String using) {

 if(n == 1) {

 System.out.println("move disk from " + from + " to " + to);

 }

 else {

 move(n - 1, from, using, to);

 move(1, from, to, using);

 move(n - 1, using, to, from);

 }

}

36

