
Informal Analysis of Merge Sort 
 suppose the running time (the number of operations) 

of merge sort is a function of the number of elements 
to sort 

 let the function be T(n)  

 merge sort works by splitting the list into two sub-lists 
(each about half the size of the original list) and 
sorting the sub-lists 
 this takes  2T(n/2)  running time 

 then the sub-lists are merged 

 this takes O(n) running time 

 total running time T(n) = 2T(n/2) + O(n) 
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Solving the Recurrence Relation 
T(n)  2T(n/2) + O(n)                 T(n) approaches... 

    2T(n/2) + n 

  = 2[ 2T(n/4) + n/2 ] + n 

  = 4T(n/4) + 2n  

  = 4[ 2T(n/8) + n/4 ] + 2n 

  = 8T(n/8) + 3n  

  = 8[ 2T(n/16) + n/8 ] + 3n 

  = 16T(n/16) + 4n  

  = 2
kT(n/2k) + kn  
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Solving the Recurrence Relation 
T(n) = 2

kT(n/2k) + kn  

 

 for a list of length 1 we know T(1) = 1  

 if we can substitute T(1) into the right-hand side of T(n) we 
might be able to solve the recurrence 

 we have T(n/2k) on the right-hand side, so we need to find 
some value of k such that 

 

n/2k = 1    2k = n  k = log2(n) 

3 



Solving the Recurrence Relation 
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𝑇 𝑛 = 2log2 𝑛 𝑇 𝑛 2log2 𝑛 + 𝑛 log2 𝑛 

= 𝑛 𝑇 1 + 𝑛 log2 𝑛 
= 𝑛 + 𝑛 log2 𝑛 
∈ 𝑛 log2 𝑛 



Proof for 𝑂(𝑛 log2 𝑛) 
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𝑛 < 𝑛 log2 𝑛 

∴   𝑛 + 𝑛 log2 𝑛 < 2𝑛 log2 𝑛 

for 𝑛 > 2 

∴   𝑛 + 𝑛 log2 𝑛 < 𝑀𝑛 log2 𝑛 for 𝑛 > 𝑚 

is true for 𝑀 = 2 and 𝑚 = 2 

for 𝑛 > 2 

∴   𝑛 + 𝑛 log2 𝑛   ∈  𝑂 𝑛 log2 𝑛  



Recursion 

notes Chapter 8 
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Is Merge Sort Efficient? 
 consider a simpler (non-recursive) sorting algorithm 

called insertion sort 
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// to sort an array a[0]..a[n-1]               not Java 

for i = 0 to (n-1) { 

  k = index of smallest element in sub-array a[i]..a[n-1] 

  swap a[i] and a[k] 

} 

for i = 0 to (n-1) {                            not Java 

  for j = (i+1) to (n-1) { 

    if (a[j] < a[i]) { 

      k = j; 

    } 

  } 

  tmp = a[i];   a[i] = a[k];   a[k] = tmp; 

} 

1 comparison + 
1 assignment 

3 assignments 

find smallest 
element 
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𝑇 𝑛 =   2

𝑛−1

𝑗=𝑖+1

+ 3

𝑛−1

𝑖=0

 

=  2 𝑛 − 1 − 𝑖 + 1 + 1

𝑛−1

𝑖=0

+ 3

𝑛−1

𝑖=0

 

=  2 𝑛 − 𝑖 − 1

𝑛−1

𝑖=0

+ 3𝑛 

= 2 𝑛

𝑛−1

𝑖=0

− 2 𝑖

𝑛−1

𝑖=0

− 2 1

𝑛−1

𝑖=0

+ 3𝑛 

= 2𝑛2 − 2
𝑛 𝑛 − 1

2
− 2𝑛 + 3𝑛 

= 2𝑛2 − 𝑛2 + 𝑛 − 2𝑛 + 3𝑛 

= 𝑛2 + 2𝑛 ∈ 𝑂 𝑛2  



Comparing Rates of Growth 
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O(n) 

O(n logn) 

O(n2) O(2n) 

n 



Comments 
 big O complexity tells you something about the 

running time of an algorithm as the size of the input, 
n, approaches infinity 

 we say that it describes the limiting, or asymptotic, running 
time of an algorithm 

 for small values of n it is often the case that a less 
efficient algorithm (in terms of big O) will run faster 
than a more efficient one 

 insertion sort is typically faster than merge sort for short 
lists of numbers 
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Revisiting the Fibonacci Numbers 
 the recursive implementation based on the definition 

of the Fibonacci numbers is inefficient 

 
public static int fibonacci(int n) { 

  if (n == 0) { 

   return 0; 

  } 

  else if (n == 1) { 

   return 1; 

  } 

  int f = fibonacci(n - 1) + fibonacci(n - 2); 

  return f; 

} 
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 how inefficient is it? 

 let T(n) be the running time to compute the nth 
Fibonacci number 

 T(0) = T(1) = 1 

 T(n) is a recurrence relation 
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 T(n) 
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Solving the Recurrence Relation 
T(n) > 2

kT(n - 2k) 

 

 we know T(1) = 1  

 if we can substitute T(1) into the right-hand side of T(n) we 
might be able to solve the recurrence 

 we have T(n - 2k) so we need to find a value for k such that: 

 

n - 2k = 1    1 + 2k = n  k = (n – 1)/2 
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Towers of Hanoi 
 a problem easily solved using recursion 

 

 

 

 

 

 

 move the stack of n disks from A to C 

 can move one disk at a time from the top of one stack onto 
another stack 

 cannot move a larger disk onto a smaller disk 
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A B C 



Towers of Hanoi 
 legend says that the world will end when a 64 disk 

version of the puzzle is solved 

 several appearances in pop culture 

 Doctor Who 

 Rise of the Planet of the Apes 

 Survior: South Pacific 
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Towers of Hanoi 
 n = 1 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 1 
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A B C 



Towers of Hanoi 
 n = 2 

 

 

 

 

 

 

 

 

 move disk from A to B 
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A B C 



Towers of Hanoi 
 n = 2 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 2 

 

 

 

 

 

 

 

 

 move disk from B to C 

21 

A B C 



Towers of Hanoi 
 n = 2 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from A to B 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from C to B 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from B to A 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from B to C 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 3 
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A B C 



Towers of Hanoi 
 n = 4 

 

 

 

 

 

 

 

 

 move (n – 1) disks from A to B using C 
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A B C 



Towers of Hanoi 
 n = 4 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 4 

 

 

 

 

 

 

 

 

 move (n – 1) disks from B to C using A 
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A B C 



Towers of Hanoi 
 n = 4 

34 

A B C 



 base case n = 1  

1. move disk from A to C 

 recursive case 

1. move (n – 1) disks from A to B 

2. move 1 disk from A to C 

3. move (n – 1) disks from B to C 
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Towers of Hanoi 
 

public static void move(int n, 

                        String from, 

                        String to, 

                        String using) { 

  if(n == 1) { 

    System.out.println("move disk from " + from + " to " + to); 

  } 

  else { 

    move(n - 1, from, using, to); 

    move(1, from, to, using); 

    move(n - 1, using, to, from); 

  } 

} 
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