
Informal Analysis of Merge Sort 
 suppose the running time (the number of operations) 

of merge sort is a function of the number of elements 
to sort 

 let the function be T(n)  

 merge sort works by splitting the list into two sub-lists 
(each about half the size of the original list) and 
sorting the sub-lists 
 this takes  2T(n/2)  running time 

 then the sub-lists are merged 

 this takes O(n) running time 

 total running time T(n) = 2T(n/2) + O(n) 
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Solving the Recurrence Relation 
T(n)  2T(n/2) + O(n)                 T(n) approaches... 

    2T(n/2) + n 

  = 2[ 2T(n/4) + n/2 ] + n 

  = 4T(n/4) + 2n  

  = 4[ 2T(n/8) + n/4 ] + 2n 

  = 8T(n/8) + 3n  

  = 8[ 2T(n/16) + n/8 ] + 3n 

  = 16T(n/16) + 4n  

  = 2
kT(n/2k) + kn  
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Solving the Recurrence Relation 
T(n) = 2

kT(n/2k) + kn  

 

 for a list of length 1 we know T(1) = 1  

 if we can substitute T(1) into the right-hand side of T(n) we 
might be able to solve the recurrence 

 we have T(n/2k) on the right-hand side, so we need to find 
some value of k such that 

 

n/2k = 1    2k = n  k = log2(n) 
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Solving the Recurrence Relation 
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𝑇 𝑛 = 2log2 𝑛 𝑇 𝑛 2log2 𝑛 + 𝑛 log2 𝑛 

= 𝑛 𝑇 1 + 𝑛 log2 𝑛 
= 𝑛 + 𝑛 log2 𝑛 
∈ 𝑛 log2 𝑛 



Proof for 𝑂(𝑛 log2 𝑛) 
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𝑛 < 𝑛 log2 𝑛 

∴   𝑛 + 𝑛 log2 𝑛 < 2𝑛 log2 𝑛 

for 𝑛 > 2 

∴   𝑛 + 𝑛 log2 𝑛 < 𝑀𝑛 log2 𝑛 for 𝑛 > 𝑚 

is true for 𝑀 = 2 and 𝑚 = 2 

for 𝑛 > 2 

∴   𝑛 + 𝑛 log2 𝑛   ∈  𝑂 𝑛 log2 𝑛  



Recursion 

notes Chapter 8 
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Is Merge Sort Efficient? 
 consider a simpler (non-recursive) sorting algorithm 

called insertion sort 
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// to sort an array a[0]..a[n-1]               not Java 

for i = 0 to (n-1) { 

  k = index of smallest element in sub-array a[i]..a[n-1] 

  swap a[i] and a[k] 

} 

for i = 0 to (n-1) {                            not Java 

  for j = (i+1) to (n-1) { 

    if (a[j] < a[i]) { 

      k = j; 

    } 

  } 

  tmp = a[i];   a[i] = a[k];   a[k] = tmp; 

} 

1 comparison + 
1 assignment 

3 assignments 

find smallest 
element 
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𝑇 𝑛 =   2

𝑛−1

𝑗=𝑖+1

+ 3

𝑛−1

𝑖=0

 

=  2 𝑛 − 1 − 𝑖 + 1 + 1

𝑛−1

𝑖=0

+ 3

𝑛−1

𝑖=0

 

=  2 𝑛 − 𝑖 − 1

𝑛−1

𝑖=0

+ 3𝑛 

= 2 𝑛

𝑛−1

𝑖=0

− 2 𝑖

𝑛−1

𝑖=0

− 2 1

𝑛−1

𝑖=0

+ 3𝑛 

= 2𝑛2 − 2
𝑛 𝑛 − 1

2
− 2𝑛 + 3𝑛 

= 2𝑛2 − 𝑛2 + 𝑛 − 2𝑛 + 3𝑛 

= 𝑛2 + 2𝑛 ∈ 𝑂 𝑛2  



Comparing Rates of Growth 
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O(n) 

O(n logn) 

O(n2) O(2n) 

n 



Comments 
 big O complexity tells you something about the 

running time of an algorithm as the size of the input, 
n, approaches infinity 

 we say that it describes the limiting, or asymptotic, running 
time of an algorithm 

 for small values of n it is often the case that a less 
efficient algorithm (in terms of big O) will run faster 
than a more efficient one 

 insertion sort is typically faster than merge sort for short 
lists of numbers 
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Revisiting the Fibonacci Numbers 
 the recursive implementation based on the definition 

of the Fibonacci numbers is inefficient 

 
public static int fibonacci(int n) { 

  if (n == 0) { 

   return 0; 

  } 

  else if (n == 1) { 

   return 1; 

  } 

  int f = fibonacci(n - 1) + fibonacci(n - 2); 

  return f; 

} 
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 how inefficient is it? 

 let T(n) be the running time to compute the nth 
Fibonacci number 

 T(0) = T(1) = 1 

 T(n) is a recurrence relation 
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 T(n) 
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Solving the Recurrence Relation 
T(n) > 2

kT(n - 2k) 

 

 we know T(1) = 1  

 if we can substitute T(1) into the right-hand side of T(n) we 
might be able to solve the recurrence 

 we have T(n - 2k) so we need to find a value for k such that: 

 

n - 2k = 1    1 + 2k = n  k = (n – 1)/2 
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Towers of Hanoi 
 a problem easily solved using recursion 

 

 

 

 

 

 

 move the stack of n disks from A to C 

 can move one disk at a time from the top of one stack onto 
another stack 

 cannot move a larger disk onto a smaller disk 

 
15 

A B C 



Towers of Hanoi 
 legend says that the world will end when a 64 disk 

version of the puzzle is solved 

 several appearances in pop culture 

 Doctor Who 

 Rise of the Planet of the Apes 

 Survior: South Pacific 
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Towers of Hanoi 
 n = 1 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 1 
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A B C 



Towers of Hanoi 
 n = 2 

 

 

 

 

 

 

 

 

 move disk from A to B 
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A B C 



Towers of Hanoi 
 n = 2 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 2 

 

 

 

 

 

 

 

 

 move disk from B to C 
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A B C 



Towers of Hanoi 
 n = 2 

22 

A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from A to B 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from C to B 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from B to A 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from B to C 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 3 
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A B C 



Towers of Hanoi 
 n = 4 

 

 

 

 

 

 

 

 

 move (n – 1) disks from A to B using C 
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A B C 



Towers of Hanoi 
 n = 4 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 4 

 

 

 

 

 

 

 

 

 move (n – 1) disks from B to C using A 
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A B C 



Towers of Hanoi 
 n = 4 
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A B C 



 base case n = 1  

1. move disk from A to C 

 recursive case 

1. move (n – 1) disks from A to B 

2. move 1 disk from A to C 

3. move (n – 1) disks from B to C 
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Towers of Hanoi 
 

public static void move(int n, 

                        String from, 

                        String to, 

                        String using) { 

  if(n == 1) { 

    System.out.println("move disk from " + from + " to " + to); 

  } 

  else { 

    move(n - 1, from, using, to); 

    move(1, from, to, using); 

    move(n - 1, using, to, from); 

  } 

} 
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