
Informal Analysis of Merge Sort
 suppose the running time (the number of operations)

of merge sort is a function of the number of elements
to sort

 let the function be T(n)

 merge sort works by splitting the list into two sub-lists
(each about half the size of the original list) and
sorting the sub-lists
 this takes 2T(n/2) running time

 then the sub-lists are merged

 this takes O(n) running time

 total running time T(n) = 2T(n/2) + O(n)

1

Solving the Recurrence Relation
T(n)  2T(n/2) + O(n) T(n) approaches...

  2T(n/2) + n

 = 2[2T(n/4) + n/2] + n

 = 4T(n/4) + 2n

 = 4[2T(n/8) + n/4] + 2n

 = 8T(n/8) + 3n

 = 8[2T(n/16) + n/8] + 3n

 = 16T(n/16) + 4n

 = 2
kT(n/2k) + kn

2

Solving the Recurrence Relation
T(n) = 2

kT(n/2k) + kn

 for a list of length 1 we know T(1) = 1

 if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

 we have T(n/2k) on the right-hand side, so we need to find
some value of k such that

n/2k = 1  2k = n  k = log2(n)

3

Solving the Recurrence Relation

4

𝑇 𝑛 = 2log2 𝑛 𝑇 𝑛 2log2 𝑛 + 𝑛 log2 𝑛

= 𝑛 𝑇 1 + 𝑛 log2 𝑛
= 𝑛 + 𝑛 log2 𝑛
∈ 𝑛 log2 𝑛

Proof for 𝑂(𝑛 log2 𝑛)

5

𝑛 < 𝑛 log2 𝑛

∴ 𝑛 + 𝑛 log2 𝑛 < 2𝑛 log2 𝑛

for 𝑛 > 2

∴ 𝑛 + 𝑛 log2 𝑛 < 𝑀𝑛 log2 𝑛 for 𝑛 > 𝑚

is true for 𝑀 = 2 and 𝑚 = 2

for 𝑛 > 2

∴ 𝑛 + 𝑛 log2 𝑛 ∈ 𝑂 𝑛 log2 𝑛

Recursion

notes Chapter 8

6

Is Merge Sort Efficient?
 consider a simpler (non-recursive) sorting algorithm

called insertion sort

7

// to sort an array a[0]..a[n-1] not Java

for i = 0 to (n-1) {

 k = index of smallest element in sub-array a[i]..a[n-1]

 swap a[i] and a[k]

}

for i = 0 to (n-1) { not Java

 for j = (i+1) to (n-1) {

 if (a[j] < a[i]) {

 k = j;

 }

 }

 tmp = a[i]; a[i] = a[k]; a[k] = tmp;

}

1 comparison +
1 assignment

3 assignments

find smallest
element

8

𝑇 𝑛 = 2

𝑛−1

𝑗=𝑖+1

+ 3

𝑛−1

𝑖=0

= 2 𝑛 − 1 − 𝑖 + 1 + 1

𝑛−1

𝑖=0

+ 3

𝑛−1

𝑖=0

= 2 𝑛 − 𝑖 − 1

𝑛−1

𝑖=0

+ 3𝑛

= 2 𝑛

𝑛−1

𝑖=0

− 2 𝑖

𝑛−1

𝑖=0

− 2 1

𝑛−1

𝑖=0

+ 3𝑛

= 2𝑛2 − 2
𝑛 𝑛 − 1

2
− 2𝑛 + 3𝑛

= 2𝑛2 − 𝑛2 + 𝑛 − 2𝑛 + 3𝑛

= 𝑛2 + 2𝑛 ∈ 𝑂 𝑛2

Comparing Rates of Growth

9

O(n)

O(n logn)

O(n2) O(2n)

n

Comments
 big O complexity tells you something about the

running time of an algorithm as the size of the input,
n, approaches infinity

 we say that it describes the limiting, or asymptotic, running
time of an algorithm

 for small values of n it is often the case that a less
efficient algorithm (in terms of big O) will run faster
than a more efficient one

 insertion sort is typically faster than merge sort for short
lists of numbers

10

Revisiting the Fibonacci Numbers
 the recursive implementation based on the definition

of the Fibonacci numbers is inefficient

public static int fibonacci(int n) {

 if (n == 0) {

 return 0;

 }

 else if (n == 1) {

 return 1;

 }

 int f = fibonacci(n - 1) + fibonacci(n - 2);

 return f;

}

11

 how inefficient is it?

 let T(n) be the running time to compute the nth
Fibonacci number

 T(0) = T(1) = 1

 T(n) is a recurrence relation

12

 T(n)

13

)2()1( nTnT

 )2()3()2( nTnTnT

)3()2(2  nTnT

)2(2  nT

 )4(4)4(22  nTnT

 )6(8)6(24  nTnT

 )8(16)8(28  nTnT

)2(2 knTk 

Solving the Recurrence Relation
T(n) > 2

kT(n - 2k)

 we know T(1) = 1

 if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

 we have T(n - 2k) so we need to find a value for k such that:

n - 2k = 1  1 + 2k = n  k = (n – 1)/2

14

   )2(2)1(2)2(2)(2121 nnnk OTknTnT  

Towers of Hanoi
 a problem easily solved using recursion

 move the stack of n disks from A to C

 can move one disk at a time from the top of one stack onto
another stack

 cannot move a larger disk onto a smaller disk

15

A B C

Towers of Hanoi
 legend says that the world will end when a 64 disk

version of the puzzle is solved

 several appearances in pop culture

 Doctor Who

 Rise of the Planet of the Apes

 Survior: South Pacific

16

Towers of Hanoi
 n = 1

 move disk from A to C

17

A B C

Towers of Hanoi
 n = 1

18

A B C

Towers of Hanoi
 n = 2

 move disk from A to B

19

A B C

Towers of Hanoi
 n = 2

 move disk from A to C

20

A B C

Towers of Hanoi
 n = 2

 move disk from B to C

21

A B C

Towers of Hanoi
 n = 2

22

A B C

Towers of Hanoi
 n = 3

 move disk from A to C

23

A B C

Towers of Hanoi
 n = 3

 move disk from A to B

24

A B C

Towers of Hanoi
 n = 3

 move disk from C to B

25

A B C

Towers of Hanoi
 n = 3

 move disk from A to C

26

A B C

Towers of Hanoi
 n = 3

 move disk from B to A

27

A B C

Towers of Hanoi
 n = 3

 move disk from B to C

28

A B C

Towers of Hanoi
 n = 3

 move disk from A to C

29

A B C

Towers of Hanoi
 n = 3

30

A B C

Towers of Hanoi
 n = 4

 move (n – 1) disks from A to B using C

31

A B C

Towers of Hanoi
 n = 4

 move disk from A to C

32

A B C

Towers of Hanoi
 n = 4

 move (n – 1) disks from B to C using A

33

A B C

Towers of Hanoi
 n = 4

34

A B C

 base case n = 1

1. move disk from A to C

 recursive case

1. move (n – 1) disks from A to B

2. move 1 disk from A to C

3. move (n – 1) disks from B to C

35

Towers of Hanoi

public static void move(int n,

 String from,

 String to,

 String using) {

 if(n == 1) {

 System.out.println("move disk from " + from + " to " + to);

 }

 else {

 move(n - 1, from, using, to);

 move(1, from, to, using);

 move(n - 1, using, to, from);

 }

}

36

